Name	Date	Period

Cellular Respiration Virtual Lab

Carbon Transfer Through Snails and Elodea

Background:

All organisms are dependent on a healthy **carbon dioxide-oxygen balance**. Photosynthesis and cellular respiration are key processes in maintaining this balance. Plants, through the process of photosynthesis, use energy absorbed from sunlight, water, and carbon dioxide to produce sugars and oxygen. Animals **and** plants, through the process of cellular respiration, use oxygen and sugars to produce carbon dioxide, water, and the energy needed to maintain life.

Purpose:

To determine how carbon dioxide cycles through a biological system by performing the "Carbon Transfer Through Snails and Elodea" virtual experiment found on this webpage:

http://www.classzone.com/cz/books/bio_07/resources/htmls/virtual_labs/virtualLabs.html

<u>Procedure:</u> Follow the steps to the lab given on the screen until you complete all seven (7) steps. You will need to fill in the lab notebook as you go, but you will *only be graded on what you put on this assignment sheet*.

- 1. Read through the *problem* tab. Create your own question for what you are *investigating* in this experiment.
 - a. Problem (in question form):
- 2. *Explore* the lab to learn what is available to you in your investigation. You must click on **each** item in the checklist. Describe the materials you will be using in this lab.
 - a. What is **Bromthymol Blue**? Why is the BTB in the beaker **green**?
 - b. If snails use lungs to breathe, you can conclude that they **release** which *gas* into their environment as a result of **respiration**?
 - c. If *Elodea* is an aquatic plant, you can conclude that it **releases** which *gas* into its environment as a result of **photosynthesis**?
 - d. What is the purpose of the growth light?
 - e. What is the purpose of the **test tube rack cover**?

_	L no combon	diavida is sus			haa		1f a a di	
g.			sent in your tes be will be a					
		t, your test tu			00.0.1.11.0	. iaige ameai	o. ooz 13 p	
	test tube will	be	·					
	test tube will	be	·					
/poth	test tube will nesis:	be	·					
	nesis:			um water thr	ough snails a	and <i>Elodea.</i>		
	nesis:		ycles in aquario	um water thr	ough snails a	and <i>Elodea.</i>		٦
plain	nesis: how carbon c	ioxide (CO₂) c	ycles in aquarii					
plain	nesis: how carbon c	ioxide (CO₂) c						
plain	nesis: how carbon c	ioxide (CO₂) c	ycles in aquarii					
plain	nesis: how carbon c	ioxide (CO₂) c	ycles in aquarii					
plain	nesis: how carbon c	ioxide (CO₂) c	ycles in aquarii					
plain	nesis: how carbon c	ioxide (CO₂) c	ycles in aquario	st tube wít	th bromth			
plain	nesis: how carbon c	ioxide (CO₂) c	ycles in aquarii	st tube wít	th bromth			
plain	nesis: how carbon c	ioxide (CO₂) c	ycles in aquario	st tube wít	th bromth			

f. **Draw** the picture seen on the CO2 – O2 Cycle poster.

a. Identify the **dependent variable**(what you, the scientist, will *measure*) in this experiment:

each test tube.

of this experiment, the independent variable will be the number of snails and/or number of elodea plants in

5. <u>Data/Results:</u>

You will be using **8 test tubes** for this experiment. Fill your test tubes and perform the experiment *according to the data chart* found below.

First Test Tube Rack – Placed under the *growth light:*

TEST TUBE WITH BTB	INDEPENDENT VARIABLES	BEGINNING COLOR	COLOR PREDICTION	COLOR RESULT
Tube # 1 (control)	No snails, No <i>Elodea</i>	Green		
Tube #2	2 snails	Green		
Tube #3	2 Elodea	Green		
Tube #4	2 snails, 2 <i>Elodea</i>	Green		

Second Test Tube Rack – Placed under the test tube cover:

TEST TUBE WITH BTB	INDEPENDENT VARIABLES	BEGINNING COLOR	COLOR PREDICTION	COLOR RESULT
Tube # 1 (control)	No snails, No Elodea	Green		
Tube #2	2 snails	Green		
Tube #3	2 Elodea	Green		
Tube #4	2 snails, 2 <i>Elodea</i>	Green		

6. **Conclusions:**

Complete the following sentences.
a. In the test tubes which contained only snails
b. In the test tubes which contained only Elodea under the light
c. In the test tubes which contained only Elodea in the dark
d. In the test tubes which contained both snails and Elodea under the light
Discussion: 1) Conclude. What is the relationship between snails and Elodea?
2) Analyze. Why did the color of the Bromthymol Blue (BTB) solution change in certain test tubes?
3) Analyze. What was the importance of a control in your experiment? What would you conclude if the color of the solution in the control changed?
4) Infer. When you began the experiment, was there CO_2 in the water? In the test tubes that contained Elodea, wher did the CO_2 go?
5) Infer. Which gas did the snails release? What observation supports this inference?

6) **Apply.** Based on the results of your experiment, explain why you need to add the Elodea to your snail aquarium.