Name			
-			

Date

Pd

Unit 4: Elevator Lab

In this activity you will analyze the forces acting on a person riding in an elevator.

Before you watch the video clip answer the following questions:

- 1. Describe the times in the elevator when you feel your "normal" weight.
- 2. Describe the times in the elevator when you feel <u>heavier</u> than your "normal" weight.
- 3. Describe the times in the elevator when you feel <u>lighter</u> than your "normal" weight.

Activity: Watch the video clip: Elevator-cues. Record the scale readings you see.

	Force (pounds)	Force (newtons) (1 pound = 4.5 Newtons)		
Scale reading at rest:				
Maximum scale reading:				
Minimum scale reading:				
Label the following as equa	l to, greater than, or le	ss than the scale reading at rest.		
At rest at the	ne bottom			
Starting to	go up			
Going up a	t constant speed			
Slowing to	stop at the top			
Stopped at	the top			
Starting to	Starting to go down			
Going dow	n at constant speed.			
Slowing to	stop at the bottom.			
Calculate the mass of the pe	rson on the scale in kild	ograms:		

Force Analysis: Draw a quantitative force diagram for the passenger in each of the following situations during the elevator ride. Label the forces in newtons. To the right of each diagram draw a **velocity** and **acceleration** vector that describes the motion of person in the elevator. Calculate the net force and the acceleration of the person.

1. At rest at the bottom	2. Starting to go up	
Quantitative force diagram	Quantitative force diagram	
velocity vector:	velocity vector:	
acceleration vector:	acceleration vector:	
net force =	net force =	
acceleration =	acceleration =	
	1 3	
3. Going up at constant speed	4. Slowing to stop at the top Ouantitative force diagram	
3. Going up at constant speed Quantitative force diagram	4. Slowing to stop at the top Quantitative force diagram	
Quantitative force diagram	Quantitative force diagram	
Quantitative force diagram velocity vector:	Quantitative force diagram velocity vector:	
Quantitative force diagram velocity vector: acceleration vector:	Quantitative force diagram velocity vector: acceleration vector:	
Quantitative force diagram velocity vector: acceleration vector: net force =	Quantitative force diagram velocity vector: acceleration vector: net force =	

5. Stopped at the top Quantitative force diagram	6. Starting to go down Quantitative force diagram	
velocity vector:	velocity vector:	
acceleration vector:	acceleration vector:	
net force =	net force =	
acceleration =	acceleration =	
7. Going down at constant speed. Quantitative force diagram	8. Slowing to stop at the bottom. Quantitative force diagram	
velocity vector:	velocity vector:	
acceleration vector:	acceleration vector:	
net force =	net force =	
acceleration =	acceleration =	

9. How do the upward accelerations compare to the downward accelerations? Explain why.

Extension:

Watch the video clips Elevator-1 and Elevator-2. From changes in the scale readings during the rides, determine whether the elevator was ascending or descending in each clip. Justify your conclusions.