

Travelling Waves

Wave Motion

- A wave is the motion of a disturbance
- Mechanical waves require
 - Some source of disturbance
 - A medium that can be disturbed
 - Some physical connection between or mechanism though which adjacent portions of the medium influence each other

All waves carry energy and momentum

Types of Waves – Traveling Waves

- Flip one end of a long rope that is under tension and fixed at one end
- The pulse travels to the right with a definite speed
- A disturbance of this type is called a *traveling wave*

Types of Waves – Transverse

 In a transverse wave, each element that is disturbed moves in a direction perpendicular to the wave motion

Types of Waves – Longitudinal

- In a longitudinal wave, the elements of the medium undergo displacements parallel to the motion of the wave
- A longitudinal wave is also called a compression wave

Waveform – A Picture of a Wave

- The brown curve is a "snapshot" of the wave at some instant in time
- The blue curve is later in time
- The high points are crests of the wave
- The low points are troughs of the wave

Longitudinal Wave Represented as a Sine Curve

- A longitudinal wave can also be represented as a sine curve
- Compressions correspond to crests and stretches correspond to troughs
- Also called density waves or pressure waves

Description of a Wave

- A steady stream of pulses on a very long string produces a continuous wave
- The blade oscillates in simple harmonic motion
- Each small segment of the string, such as P, oscillates with simple harmonic motion

Amplitude and Wavelength

- Amplitude is the maximum displacement of string above the equilibrium position
- Wavelength, λ, is the distance between two successive points that behave identically

The wavelength of a progressive transverse wave is defined as

- A. the distance between a crest and its neighbouring trough.
- B. the distance between any two crests of the wave.
- C. the distance moved by a wavefront during one oscillation of the source.
- D. the distance moved by a particle in the wave during one oscillation of the source.

Speed of a Wave

- $v = f \lambda$
 - Is derived from the basic speed equation of distance/time
- This is a general equation that can be applied to many types of waves

The displacement *d* of a particle in a wave varies with distance *x* along a wave and with time *t* as shown below.

Which expression gives the speed of the wave?

A. $l/4\tau$ B. $l/2\tau$ C. l/τ D. $2l/\tau$

Producing a Sound Wave

- Sound waves are longitudinal waves traveling through a medium
- A tuning fork can be used as an example of producing a sound wave

Using a Tuning Fork to Produce a Sound Wave

- A tuning fork will produce a pure musical note
- As the tines vibrate, they disturb the air near them
- As the tine swings to the right, it forces the air molecules near it closer together
- This produces a high density area in the air
 - This is an area of compression

Using a Tuning Fork, cont.

- As the tine moves toward the left, the air molecules to the right of the tine spread out
- This produces an area of low density
 - This area is called a rarefaction

Low-density region

Using a Tuning Fork, final

- As the tuning fork continues to vibrate, a succession of compressions and rarefactions spread out from the fork
- A sinusoidal curve can be used to represent the longitudinal wave
 - Crests correspond to compressions and troughs to rarefactions

Electromagnetic Waves, Summary

- A changing magnetic field produces an electric field
- A changing electric field produces a magnetic field
- These fields are in phase
 - At any point, both fields reach their maximum value at the same time

Electromagnetic Waves are Transverse Waves

- The **E** and **B** fields are perpendicular to each other
- Both fields are perpendicular to the direction of motion
 - Therefore, em waves are transverse waves

Properties of EM Waves

- Electromagnetic waves are transverse waves
- Electromagnetic waves travel at the speed of light
- Because em waves travel at a speed that is precisely the speed of light, *light* is an electromagnetic wave
- Electromagnetic waves carry energy as they travel through space, and this energy can be transferred to objects placed in their path

The Spectrum of EM Waves

 Forms of electromagnetic waves exist that are distinguished by their frequencies and wavelengths

• $c = f\lambda$

- Wavelengths for visible light range from 400 nm to 700 nm
- There is no sharp division between one kind of em wave and the next

The EM Spectrum

- Note the overlap between types of waves
- Visible light is a small portion of the spectrum
- Types are distinguished by frequency or wavelength

1 micrometer (μ m) = 10⁻⁶ m 1 nanometer (nm) = 10⁻⁹ m 1 angstrom (Å) = 10⁻¹⁰ m Notes on The EM Spectrum

- Radio Waves
 - Used in radio and television communication systems
- Microwaves
 - Wavelengths from about 1 mm to 30 cm
 - Well suited for radar systems
 - Microwave ovens are an application

Notes on the EM Spectrum, 2

- Infrared waves
 - Incorrectly called "heat waves"
 - Produced by hot objects and molecules
 - Readily absorbed by most materials
- Visible light
 - Part of the spectrum detected by the human eye
 - Most sensitive at about 560 nm (yellow-green)

Notes on the EM Spectrum, 3

- Ultraviolet light
 - Covers about 400 nm to 0.6 nm
 - Sun is an important source of uv light
 - Most uv light from the sun is absorbed in the stratosphere by ozone
- X-rays
 - Most common source is acceleration of high-energy electrons striking a metal target
 - Used as a diagnostic tool in medicine

Notes on the EM Spectrum, final

- Gamma rays
 - Emitted by radioactive nuclei
 - Highly penetrating and cause serious damage when absorbed by living tissue
- Looking at objects in different portions of the spectrum can produce different information

The Particle Nature of Light

- Particles" of light are called photons
- Each photon has a particular energy
 - E = h *f*
 - h is Planck's constant
 - h = 6.63 x 10⁻³⁴ J s
 - Encompasses both natures of light
 - Interacts like a particle
 - Has a given frequency like a wave

Dual Nature of Light

- Experiments can be devised that will display either the wave nature or the particle nature of light
 - In some experiments light acts as a wave and in others it acts as a particle
- Nature prevents testing both qualities at the same time