AP Waves: Worksheet 4

An ideal Hookean spring of spring constant 20.0 N/m is connected to a 0.500 kg block in the arrangement shown to the right. The (*) represents the position of the center of the block when the spring is unstretched. (Positions are not to scale.) From this position the experimenter <u>slowly</u> lowers the block from (*) until it reaches point B where the system is at rest.

For this problem use position B as your zero height for the measurement of gravitational energy. Assume there is no friction.

- a. How far does the spring stretch when the 0.500 kg block is slowly lowered to position B?
- b. The block is then pulled to position A, 10.0 cm below position B. It is released and allowed to oscillate between positions A and C. In the space below calculate the elastic energy, gravitational energy, and kinetic energy of the system at positions A, B, and C.

- c. How fast is the block moving at the instant the center is even with position B?
- d. Create quantitative energy bar graphs for the system at the positions indicated for one complete cycle of the system starting when it is released at position A until it returns to position A the first time.

E	k	E_{g}	E_{e}	Eth	I	Eĸ	E_{g}	E_{e}	Eth		Eĸ	Eg	Ee	E_{th}		Eĸ	E_{g}	Ee	E_{th}		Eĸ	Eg	Ee	E _{th}
Ē											<u> </u>									t				
+																				ŀ				
È											<u> </u>	·								t				
0					- 0					0					0					0				
Ē											[]]									ļ				
+																				ŀ				
											[Ē				
		Pos ر،	ition	A			Pos	sition	В		-	Pos	sition	С			Pos	sition	В	•		Pos	ition	A
(0	over	;)																						

e. What change could you make that would eliminate this negative portion? What does this indicate about the nature of gravitational energy?

f. Determine the period of oscillation for the mass/spring system.

2. The mass is changed and the spring is replaced with another that has a spring constant of 15.2 N/m. The period with this new mass and spring is 0.66 s. How much mass is hanging on the new spring?