Name

Date _____ Pd____

AP Waves, Worksheet 10

1. A tube has a piston located as shown in the diagram.

- a. Sketch the indicated mode of vibration for this setup
- b. Determine the unknown value in each box
- c. Place the name of each mode in the frequency box

MODE	DIAGRAM	WAVELENGTH	FREQUENCY	WAVE SPEED
1 st				340. m/s
2 nd				340. m/s
3 rd	80.0 cm			340. m/s
4 th				340. m/s
??		92.0 cm	388 Hz	

- 2. This time fill in the chart for a tube open on both ends. a. Sketch the indicated mode of vibration for this setup
 - b. Determine the unknown value in each box
 - c. Place the name of each mode in the frequency box

MODE	DIAGRAM	WAVELENGTH	FREQUENCY	WAVE SPEED
1 st	← 60.0 cm →			340. m/s
2 nd	60.0 cm			340. m/s
3 rd				340. m/s
4 th	60.0 cm▶			340. m/s
??		134 cm	256 Hz	

- 3. Patty Melt is holding a tuning fork over a tube that has been inserted into a container of water. The first resonance is at 45.2 cm, and the speed of sound in air that day is 345 m/s.
 - a. What is the frequency of the fork?
 - b. She then raises the tube until she gets a second resonance. How much of the tube is now out of the water?
- 4. A pipe open on both ends is resonating to produce a note. What could you do that would cause the same pipe to produce a note of a different frequency? Describe the change that each one would produce in the pitch of the sound. (Hint: you should be able to identify at least four changes that affect the pitch.)