All-Unit Overview/Organizer

Kinematics• Linear motion (acceleration)• Projectile Motion (moving in X &Y)• Make an X & Y chart• X and Y are <i>independent</i> • Vectors & Scalars• Adding & Subtracting Vectors –• X & Y are independent and must be added X to X ONLY and Y to Y ONLY (component form)• $x=x_0+v_0t+1/2at^2$ • $v=v_0+at$ • $v^2=v_0^2+2ad$ • $a=\frac{\Delta v}{t}$ • $v=\frac{\Delta x}{t}$	 Forces & Dynamics MAKE A Free Body Diagram Use magnitude & direction (w/ θ) for graded FBD's When more than 1 "thing", draw FBD's for all. When more than 1 "thing" is attached, draw FBD's & "positive rainbow" F_N when an object rests on a surface T when there is a rope/chain/string etc ∑F_y=ma_y ∑F_x=ma_x Do for all objects, in all directions UNLESS you know you don't need one. When ΣF=0, then a=0, which means not moving OR constant speed. F_f=µF_N
 Circular Motion Anything going in a circle – not just rotating in place a_c=v²/r → r is the radius of the ENTIRE circle In gravitation, radius of the circle goes from center of mass to center of mass (IE, you need to include the radius of the earth for orbiting masses) F_g = Gm₁m₂/r² Net force AND acceleration (a_c) both point to the center of the circle. F_f=net force for flat track F_g=Banked curve (F_{gx} contributes to net force along with F_f) 	Simple Harmonic Motion • Oscillates – restoring force • Sin & cos x, v, a graphs • Pendulums & oscillating springs • $T=^{1}/_{f}$ • $x(t)=Acos(2\pi ft)$ • Equilibrium @ x=0 • K spring constant, Hooke's Law F=kx • $T_{p}=2\pi (\frac{L}{g})^{1/2}$ • $T_{s}=2\pi (\frac{m}{k})^{1/2}$ • $T = period$ (time for one oscillation)
 Work & Energy Kinetic & Potential Spring Potential and Gravitational Potential Closed system – energy is conserved Work = ΔE = Fdcos(θ) → θ is between F and d Power=^{ΔE}/_t=Watts Asked ourselves, <i>where</i> is the object, <i>what</i> type(s) of energy does it have, <i>where</i> is that energy going *useful when there is a change in height* Energy can be transferred 	 Momentum COLLISIONS Elastic – energy is conserved Inelastic – energy is NOT conserved AND they stick together (become 1 mass) p=mv Conservation of momentum says p_i=p_f ΣP_i=ΣP_f Momentum is conserved in BOTH DIRECTIONS (X & Y still separate) Think of pool balls

 Rotational Motion & Torque Used rotational kinematic equations to solve similar to kinematics Θ = ^x/_r = angular displacement (after some time) ω = ^v/_r = angular velocity (same initial, final, etc as kinematics) α = ^a/_r = angular acceleration Στ = Iα (torque = moment of inertia * angular acceleration). Used like ΣF=ma τ=rFsinθ → torque caused by an individual force (some distance away r) We can pick where to place our center of rotation in a static (not moving) problem – we can make r=0 and eliminate variables this way. Clockwise rotation (rotates like a negative angle) = negative torque, counterclockwise rotation (sweeps out a positive angle) is a positive torque 	 Electrostatics Transfer of elections based on <i>electron</i> affinity of two surfaces Charging via Induction, Conduction, Friction Loses electrons → net positive charge; gains electrons → net negative charge F_E = kq₁q₂/r² → force between charged objects Electrons flow in conductors, not in insulators (although insulators can be charged via friction) Like charges repel (opposites attract) Check out Electrostatic videos on wikispace
 Circuits V=IR→ voltage = current * resistance P=IV → power = current * voltage Find R_{eq} Find series R, add them up Find // R, ¹/_{Req}=¹/_{R1} + ¹/_{R2} + ¹/_R Repeat Loop Law - sum of the voltages around a loop = 0 Current Law - what goes into a junction must come out of a junction (ΣI_{in}=ΣI_{out}) Use loop law, current law, ohm's law to substitute and solve 	 Waves & Sound Wave – moves energy place to place Transverse and longitudinal (sound) Standing waves (oscillation) Nodes & Anti-nodes, harmonics Interference – 2 waves in the same place at the same time, add them. Boundary Conditions Free end, fixed end, thin→thick, thick→thin Sound – difference in air pressure (rarefaction & condensation) Beat phenomena (oscillation in loudness from 2 different frequencies) Closed & open resonators