Calculating pH

How is pH related to the concentration of hydronium ions?

Why?

In biology and other science courses pH is introduced as a way to quantify the acidity or basicity of a solution. This property can be measured using a pH probe or with an indicator paper strip that changes color at different pH values. But, what is actually being measured? We know that a pH of 7 is neutral, below 7 is acid, and above 7 is base, but why? What in the solution is the paper strip or probe actually reacting with?

Model 1 – Ion Concentrations for Acids and Bases

<table>
<thead>
<tr>
<th>Beaker</th>
<th>Solution</th>
<th>Acidic, Basic or Neutral?</th>
<th>$[\text{H}_3\text{O}^+]$</th>
<th>$[\text{OH}^-]$</th>
<th>$[\text{H}_3\text{O}^+] \times [\text{OH}^-]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.10 M HCl(aq)</td>
<td>Acidic</td>
<td>1.0×10^{-1} M</td>
<td>1.0×10^{-13} M</td>
<td>1×10^{-14}</td>
</tr>
<tr>
<td>2</td>
<td>0.0010 M HCl(aq)</td>
<td>Acidic</td>
<td>1.0×10^{-3} M</td>
<td>1.0×10^{-11} M</td>
<td>1×10^{-14}</td>
</tr>
<tr>
<td>3</td>
<td>0.000010 M HCl(aq)</td>
<td>Acidic</td>
<td>1.0×10^{-5} M</td>
<td>1.0×10^{-9} M</td>
<td>1×10^{-14}</td>
</tr>
<tr>
<td>4</td>
<td>0.00000010 M HCl(aq)</td>
<td>Acidic</td>
<td>1.0×10^{-6} M</td>
<td>1.0×10^{-8} M</td>
<td>1×10^{-14}</td>
</tr>
<tr>
<td>5</td>
<td>0.00000010 M HCl(aq)</td>
<td>Neutral</td>
<td>1.0×10^{-7} M</td>
<td>1.0×10^{-7} M</td>
<td>1×10^{-14}</td>
</tr>
<tr>
<td>6</td>
<td>0.00000010 M NaOH(aq)</td>
<td>Neutral</td>
<td>1.0×10^{-7} M</td>
<td>1.0×10^{-7} M</td>
<td>1×10^{-14}</td>
</tr>
<tr>
<td>7</td>
<td>0.00000010 M NaOH(aq)</td>
<td>Basic</td>
<td>1.0×10^{-8} M</td>
<td>1.0×10^{-6} M</td>
<td>1×10^{-14}</td>
</tr>
<tr>
<td>8</td>
<td>0.00010 M NaOH(aq)</td>
<td>Basic</td>
<td>1.0×10^{-10} M</td>
<td>1.0×10^{-4} M</td>
<td>1×10^{-14}</td>
</tr>
<tr>
<td>9</td>
<td>0.010 M NaOH(aq)</td>
<td>Basic</td>
<td>1.0×10^{-12} M</td>
<td>1.0×10^{-2} M</td>
<td>1×10^{-14}</td>
</tr>
<tr>
<td>10</td>
<td>0.10 M NaOH(aq)</td>
<td>Basic</td>
<td>1.0×10^{-13} M</td>
<td>1.0×10^{-1} M</td>
<td>1×10^{-14}</td>
</tr>
</tbody>
</table>

1. What does the symbol $[\text{H}_3\text{O}^+]$ in Model 1 indicate?
 The molar concentration of hydronium ion.

2. In Beaker 2, which ion has a higher concentration, hydronium ion or hydroxide ion?
 Hydronium ion.

3. Describe how the concentration of hydronium ion was calculated for Beaker 3 in Model 1 from the concentration of the acid.
 Since HCl is a strong acid, all of the molecules ionize in water. Therefore, the H_3O^+ concentration is equal to the initial acid concentration in the solution.

4. Describe how the concentration of hydroxide ion was calculated for Beaker 8 in Model 1 from the concentration of the base.
 Since NaOH is a strong base, it completely dissociates in water. Therefore, the OH^- concentration is equal to the initial base concentration in the solution.
5. Which ion, hydronium or hydroxide, has a higher concentration in an acidic solution?

Hydronium ions are present in a higher concentration than hydroxide ions in an acidic solution.

6. Which ion, hydronium or hydroxide, is more concentrated in a neutral solution?

The concentrations of hydronium ions and hydroxide ions are equal in a neutral solution.

7. Which statement is true for basic solutions?

 a. The hydroxide ion concentration must be less than 1.0×10^{-7} M.

 b. The hydroxide ion concentration must be greater than 1.0×10^{-7} M.

 c. The hydroxide ion concentration must be more than or equal to 1.0×10^{-7} M.

8. A student makes the following statement on an exam: “Acidic solutions contain hydronium ions, while basic solutions contain hydroxide ions.” Is the student’s statement correct based on the information in Model 1? Explain.

No—all of the solutions contain both hydronium and hydroxide ions. The acidic solutions have more hydronium ions and the basic solutions have more hydroxide ions.

9. Calculate the quantity $[\text{H}_3\text{O}^+] \times [\text{OH}^-]$ for each of the 10 beakers in Model 1. Divide the work among the members in your group.

See Model 1 above.

10. If you know the hydronium ion concentration, $[\text{H}_3\text{O}^+]$, of a solution, how could you determine the hydroxide ion concentration, $[\text{OH}^-]$?

 \[
 [\text{H}_3\text{O}^+] \times [\text{OH}^-] = 1.0 \times 10^{-14}
 \]

 Enter the known value of $[\text{H}_3\text{O}^+]$ in the equation and solve for $[\text{OH}^-]$.

11. A solution has a hydronium ion concentration of 1.0×10^{-3} M.

 a. What is the hydronium ion concentration in the solution? (Show your work.)

 \[
 [\text{H}_3\text{O}^+] \times [\text{OH}^-] = 1.0 \times 10^{-14}

 [\text{H}_3\text{O}^+] \times (1.0 \times 10^{-3} \text{ M}) = 1.0 \times 10^{-14}

 [\text{H}_3\text{O}^+] = 1.0 \times 10^{-11} \text{ M}
 \]

 b. Is the solution acidic, neutral or basic? How do you know?

 The solution is basic because the $[\text{OH}^-]$ is greater than 1.0×10^{-7} M. Alternatively, the solution can be classified based on $[\text{H}_3\text{O}^+]$, which is less than 1.0×10^{-7} M.

12. A solution has a hydronium ion concentration of 4.79×10^{-3} M.

 a. What is the hydronium ion concentration in the solution? (Show your work.)

 \[
 1.0 \times 10^{-14} = [\text{H}_3\text{O}^+] \times [\text{OH}^-]

 1.0 \times 10^{-14} = [\text{H}_3\text{O}^+] \times 4.79 \times 10^{-3} \text{ M}

 [\text{H}_3\text{O}^+] = 2.1 \times 10^{-12} \text{ M}
 \]

 b. Is the solution acidic, neutral or basic? How do you know?

 The solution is basic because $[\text{OH}^-]$ is greater than 1.0×10^{-7} M. Alternatively, $[\text{H}_3\text{O}^+]$ is less than 1.0×10^{-7} M.
Read This!

The value 1.0×10^{-14} is the equilibrium constant for the autoionization of water (K_w).

$$H_2O + H_2O \rightleftharpoons H_3O^+(aq) + OH^-(aq) \quad K_w = 1.0 \times 10^{-14}$$

This equilibrium occurs in all aqueous solutions (acidic, basic, and neutral). The results of this equilibrium are as follows:

1. All aqueous solutions have some detectable concentration of both hydronium and hydroxide ions.
2. The product of these ion concentrations is always K_w.

$$K_w = [H_3O^+] \times [OH^-] = 1.0 \times 10^{-14}$$

Model 2 – A Crash Course in Logarithms

<table>
<thead>
<tr>
<th>log 1</th>
<th>log 10</th>
<th>log 100</th>
<th>log 1000</th>
<th>log (1.0×10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>log 0.1</td>
<td>log 0.01</td>
<td>log 0.001</td>
<td>log (1.0×10^-4)</td>
<td>log (1.0×10^-8)</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td>-4</td>
<td>-8</td>
</tr>
</tbody>
</table>

13. Using the examples in Model 2, explain how logarithms are calculated in terms of “factors of ten.”

A logarithm is the exponent on the “×10” part of a number in scientific notation. If a number is in the thousands, it has three “factors of ten” so the log will be 3.

14. What would be the logarithm of one million? (Do NOT use your calculator.)

$$\log (1.0 \times 10^6) = 6$$

15. Take out your scientific calculator.

a. Enter at least three of the examples shown in Model 2 into your calculator to verify that you know how to find the logarithm of a number.

b. Use your calculator to find the logarithm of 250.

$$2.39$$

c. The number 250 is between 100 and 1000. Explain why your calculator gave you an answer between 2 and 3 for the log of 250. *Hint: Think about “factors of ten.”*

The logarithm of 250 must be somewhere between log 100 = 2 and log 1000 = 3.

16. First estimate the answer for each of the following. Then, find the answer using your calculator to check your estimate.

a. 7800 b. 0.045 c. 3.4×10^9 d. 7.2×10^{-4}

$$3.89 \quad -1.35 \quad 9.53 \quad -3.14$$

Calculating pH
Model 3 – Logarithms and pH

<table>
<thead>
<tr>
<th>Solution</th>
<th>1 [H$_3$O$^+$] (Decimal notation)</th>
<th>2 [H$_3$O$^+$] (Scientific notation)</th>
<th>3 log [H$_3$O$^+$]</th>
<th>4 pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.010 M</td>
<td>1.0×10$^{-2}$ M</td>
<td>log (1.0×10$^{-2}$) = −2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>B</td>
<td>0.0055 M</td>
<td>5.5×10$^{-3}$ M</td>
<td>log (5.5×10$^{-3}$)</td>
<td>2.3</td>
</tr>
<tr>
<td>C</td>
<td>0.0010 M</td>
<td>1.0×10$^{-3}$ M</td>
<td>log (1.0×10$^{-3}$) = −3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>D</td>
<td>0.00010 M</td>
<td>1.0×10$^{-4}$ M</td>
<td>log (1.0×10$^{-4}$) = −4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>E</td>
<td>0.000027 M</td>
<td>2.7×10$^{-5}$ M</td>
<td>log (2.7×10$^{-5}$)</td>
<td>4.6</td>
</tr>
</tbody>
</table>

17. Columns 1 and 2 in Model 3 both give the molar concentration of hydronium ion in solution.
 a. What is the difference in the way the first two columns express this data?
 Decimal notation vs. scientific notation.
 b. Fill in the missing values in columns 1 and 2 of Model 3.
 See Model 3 above.

18. Estimate the missing logarithms for solutions B and E in Model 3. Then verify the answers using a calculator.
 See Model 3 above.

19. Using the examples given in Model 3, write a sentence or a mathematical equation that describes how to calculate pH from the hydronium ion concentration of a solution.
 To find pH, find the log of the hydronium ion concentration and reverse the sign. pH = −log [H$_3$O$^+$].

20. Fill in the missing pH values in column 4 of Model 3.
 See Model 3 above.

21. Calculate the pH of a solution that has a hydronium ion concentration of:
 a. 1×10$^{-4}$ M
 pH = 8
 b. 0.007 M
 pH = 2.2

22. Discuss in your group how you would find the hydronium ion concentration in a solution if you were given the pH. Check your procedure using several examples from Model 3.
 The hydronium ion concentration is determined by calculating the value of 10 raised to the power of the negative pH.
 [H$_3$O$^+$] = 10$^{-pH}$.

23. Calculate the hydronium ion concentration in solutions with a pH of:
 a. 6.0
 $[H_3O^+] = 1 \times 10^{-6} M$
 b. 5.43
 $[H_3O^+] = 10^{-5.43} = 3.7 \times 10^{-6} M$

262 POGIL™ Activities for High School Chemistry
24. Why does neutral water have a pH of 7?

When the hydronium and hydroxide ions are equal, they both have a concentration of 1.0×10^{-7} M. The negative logarithm of that concentration is 7.

25. Which solution has a greater hydronium ion concentration, one that has a pH of 4 or one that has a pH of 8? Explain.

pH of 4 has more hydronium ions. The pH number is a negative exponent, so 1×10^{-4} M is greater than 1×10^{-8} M.

26. A student makes the following statement on an exam:

"A solution with pH = 1 is twice as concentrated in hydronium ions as a solution with pH = 2."

Explain why this statement is not correct, and write a sentence that describes the correct relationship.

$pH = 1$ means $[H_3O^+] = 0.1$ M

$pH = 2$ means $[H_3O^+] = 0.01$ M

The pH = 1 solution has 10 times more hydronium ions than the pH = 2 solution.
Extension Questions

Model 4 – pH and pOH

<table>
<thead>
<tr>
<th>Solution</th>
<th>[H$_2$O$^+$]</th>
<th>[OH$^-$]</th>
<th>pH</th>
<th>pOH</th>
<th>pH + pOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1x10^{-3} M</td>
<td>1x10^{-11} M</td>
<td>3.0</td>
<td>11.0</td>
<td>14</td>
</tr>
<tr>
<td>B</td>
<td>1x10^{-9} M</td>
<td>1x10^{-5} M</td>
<td>9.0</td>
<td>5.0</td>
<td>14</td>
</tr>
<tr>
<td>C</td>
<td>5.2x10^{-3} M</td>
<td>1.9x10^{-12} M</td>
<td>2.28</td>
<td>11.72</td>
<td>14</td>
</tr>
<tr>
<td>D</td>
<td>4.79x10^{-11} M</td>
<td>2.09x10^{-4} M</td>
<td>10.32</td>
<td>3.68</td>
<td>14</td>
</tr>
<tr>
<td>E</td>
<td>5.25x10^{-10} M</td>
<td>1.91x10^{-5} M</td>
<td>9.28</td>
<td>4.72</td>
<td>14</td>
</tr>
<tr>
<td>F</td>
<td>3.31x10^{-12} M</td>
<td>3.02x10^{-3} M</td>
<td>11.48</td>
<td>2.52</td>
<td>14</td>
</tr>
</tbody>
</table>

27. Look at the examples in Model 4. If you know the concentration of hydroxide ion, [OH$^-$], in a solution, how can you determine the pOH?

\[
\text{pH} = -\log [\text{OH}^-]
\]

28. Consider the data in Model 4.

a. Calculate pH + pOH for solutions A, B and C.

See Model 4 above.

b. How could you determine the pH of a solution if you know the pOH?

Since pH + pOH = 14, substitute the known value of pOH and solve for pH.

29. Fill in all of the missing values in Model 4.

30. Calculate the [OH$^-$] and pOH of a solution that has a [H$_3$O$^+$] of 1x10^{-4} M.

\[
[H_3O^+] = 1 \times 10^{-4} M \quad \text{pH} = 4
\]

\[
[OH^-] = 1 \times 10^{-10} M \quad \text{pOH} = 10
\]