Fundamentals of Experimental Design

What is measured during a controlled experiment?

Why?

Working in the science lab can be a lot of fun. Mixing random chemicals and burning stuff just to see what happens can be entertaining (and possibly dangerous), but it doesn't lead to anything helpful to the scientific community. In order to be helpful to the community, a researcher's work in the lab must be systematic. A researcher usually asks a question and then designs an experiment to investigate that question. In this activity you will identify different types of variables that will help you design controlled experiments.

Model 1 – Alka-Seltzer® and Vinegar

1. Briefly describe the reaction illustrated in Model 1 in one or more complete sentences.

 Alka-Seltzer is placed in vinegar. The initial volume of solution, room pressure, and temperature of the solution are measured.

2. Did the room pressure change as the reaction occurred? If yes, was there an increase or decrease?

 No change.

3. What two pieces of evidence observed during the “mix” phase of the reaction suggest that a chemical change is taking place?

 Bubbles were formed and the temperature changed.

4. Did the solution temperature increase or decrease during the reaction?

 Decrease.
Model 2 – Results of Alka-Seltzer® Experiment

<table>
<thead>
<tr>
<th>Trial</th>
<th>Number of Alka-Seltzer Tablets</th>
<th>Volume of Vinegar (mL)</th>
<th>Room Pressure (kPa)</th>
<th>Initial Temp (°C) (Vinegar Solution)</th>
<th>Final Temp. (°C) (Final Mixture)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trial 1</td>
<td>1</td>
<td>100.0</td>
<td>84</td>
<td>23.5</td>
<td>22.6</td>
</tr>
<tr>
<td>Trial 2</td>
<td>2</td>
<td>100.0</td>
<td>84</td>
<td>23.5</td>
<td>21.5</td>
</tr>
<tr>
<td>Trial 3</td>
<td>3</td>
<td>100.0</td>
<td>84</td>
<td>23.5</td>
<td>20.4</td>
</tr>
<tr>
<td>Trial 4</td>
<td>4</td>
<td>100.0</td>
<td>84</td>
<td>23.5</td>
<td>19.2</td>
</tr>
<tr>
<td>Trial 5</td>
<td>5</td>
<td>100.0</td>
<td>84</td>
<td>23.5</td>
<td>18.1</td>
</tr>
</tbody>
</table>

5. Which trial in the Model 2 data table corresponds to the reaction illustrated in Model 1?

 Trial 1.

6. Consider the five trials that produced the data in Model 2.

 a. What variable was purposefully changed in the experiment?

 Number of Alka-Seltzer tablets.

 b. What variable changed as a result of changing the variable listed in part a?

 Final temperature.

7. What variable(s) shown in the Model 2 data table remained constant among all the trials?

 Volume of vinegar, room pressure, initial temperature of vinegar solution.

Model 3 – Boiling Points of Alcohols

<table>
<thead>
<tr>
<th>Alcohol Name</th>
<th>Formula</th>
<th>Number of Carbons</th>
<th>Volume of Alcohol (mL)</th>
<th>Boiling Point (°C)</th>
<th>Room Pressure (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>CH₃OH</td>
<td>1</td>
<td>75</td>
<td>64.7</td>
<td>101</td>
</tr>
<tr>
<td>Ethanol</td>
<td>CH₄CH₂OH</td>
<td>2</td>
<td>75</td>
<td>78.4</td>
<td>101</td>
</tr>
<tr>
<td>Propanol</td>
<td>CH₃CH₂CH₂OH</td>
<td>3</td>
<td>75</td>
<td>97.1</td>
<td>101</td>
</tr>
<tr>
<td>Butanol</td>
<td>CH₅CH₂CH₂CH₂OH</td>
<td>4</td>
<td>75</td>
<td>117.7</td>
<td>101</td>
</tr>
<tr>
<td>Pentanol</td>
<td>CH₅CH₂CH₂CH₂CH₂OH</td>
<td>5</td>
<td>75</td>
<td>137.9</td>
<td>101</td>
</tr>
</tbody>
</table>

8. Describe the similarities and differences in the five alcohols used in the Model 3 experiment.

 They all contain “OH” at the end.

 They have different numbers of carbons (and hydrogens) in the molecule.

9. Consider the experiment that produced the data in Model 3.

 a. What variable was purposefully changed in the experiment?

 Number of carbon atoms in the alcohol molecule.

 b. What variable changed as a result of changing the variable listed in part a?

 The boiling point.

10. What variable(s) in the Model 3 data table remained constant among all the trials?

 Volume of the alcohol and room pressure.
Read This!

When designing an experiment, you need to consider three types of variables. The independent variable is changed by the experimenter; by design. This variable is sometimes called the “manipulated variable.” The dependent variable is what changes as a result of the change in the independent variable. This variable is sometimes called the “responding variable.” In some cases more than one dependent variable is considered. The third category involves controlled variables. These are variables that you think might change the outcome of the experiment, but since you are not studying them, you need to keep them constant in each trial.

11. Identify the independent, dependent, and controlled variables for the experiments that produced the data shown in Model 2 and Model 3.

<table>
<thead>
<tr>
<th>Model Experiment</th>
<th>Variables</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alka-Seltzer® and Vinegar</td>
<td>Number of Alka-Seltzer tablets</td>
<td>Final temperature</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Volume of vinegar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Room pressure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Initial temperature</td>
</tr>
<tr>
<td>Boiling Points of Alcohols</td>
<td>Number of carbons in the alcohol</td>
<td>Boiling point</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Volume of alcohol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Room pressure</td>
</tr>
</tbody>
</table>

Read This!

A well-written research question states the independent and dependent variables for an experiment. For example, a student investigated the effect of the deicer, magnesium chloride, on vegetation on the sides of highways. Her research question was, “What is the effect of magnesium chloride solution concentration on the growth of rye grass?”

12. Write a research question, using the format suggested in the Read This! box, for the experiments in Models 2 and 3.

Alka-Seltzer® and Vinegar —

Does the number of Alka-Seltzer tablets placed in a vinegar solution change the final temperature of the solution?

Boiling Points of Alcohols —

Does the number of carbons in an alcohol molecule change the boiling point of the alcohol?

13. A student wonders, “Will changing the volume of alcohol in a boiling point experiment change the boiling point of the liquid?” Identify the variables that should be considered in this experiment.

<table>
<thead>
<tr>
<th>Independent</th>
<th>Dependent</th>
<th>Controlled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume of alcohol</td>
<td>Boiling point of alcohol</td>
<td>Number of carbon atoms, room pressure</td>
</tr>
</tbody>
</table>
Extension Questions

14. Many experiments designed to investigate the reaction of Mentos® with Diet Coke® have been documented on YouTube. Design and write an experiment that uses the knowledge gained in this activity to investigate this reaction. Include a research question; the independent, dependent and controlled variables; and a simple procedure.

Answers will vary.

Does the number of Mentos added to Diet Coke change the height of the spray from the bottle?

The independent variable is the number of Mentos, the dependent variable is the height of the spray, and the controlled variables include the temperature of the Diet Coke, width of the bottle opening, and volume of the bottle.

Does the spray height from a bottle of Diet Coke change if the Mentos are cut into pieces before added?

The independent variable is the number or size of cut up Mentos pieces, the dependent variable is the height of the spray, and the controlled variables include the temperature of the Diet Coke, width of the bottle opening, volume of the bottle, and total mass of the Mentos.

15. Scientists may design an experiment with a **control group**, which is a set of organisms or samples that do **NOT** receive the treatment (the independent variable) that is being tested. Scientists can then compare normal changes in organisms or samples with those that might have occurred because of the treatment. The idea of a “control group” is not the same as a “controlled variable.” Suppose a scientist is doing an experiment to determine the effect of a cancer drug on mice with lymphoma.

a. What are some of the variables the scientist should control in the experiment?

 Mass of food given to each mouse.
 Volume of water given to each mouse.
 Cage conditions—number of mice per cage, temperature, lighting.
 Species of mouse used in experiment.
 Sex of the mice.

b. Describe the control group for this experiment.

 The control group would be a set of mice with the same starting conditions as the testing group (same number, species, sex, age, etc). Although they would have lymphoma, they would not receive the drug being tested.