AP Chemistry Chapter 22 - Organic and Biological Molecules

22.1 Alkanes: Saturated Hydrocarbons

A. Straight-chain Hydrocarbons
 1. Straight-chain alkanes have the formula C_nH_{2n+2}
 2. Carbons are sp^3 hybridized

<table>
<thead>
<tr>
<th># of Carbons</th>
<th>Name</th>
<th>Formula (C_nH_{2n+2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Methane</td>
<td>CH_4</td>
</tr>
<tr>
<td>2</td>
<td>Ethane</td>
<td>C_2H_6</td>
</tr>
<tr>
<td>3</td>
<td>Propane</td>
<td>C_3H_8</td>
</tr>
<tr>
<td>4</td>
<td>Butane</td>
<td>C_4H_{10}</td>
</tr>
<tr>
<td>5</td>
<td>Pentane</td>
<td>C_5H_{12}</td>
</tr>
<tr>
<td>6</td>
<td>Hexane</td>
<td>C_6H_{14}</td>
</tr>
<tr>
<td>7</td>
<td>Heptane</td>
<td>C_7H_{16}</td>
</tr>
<tr>
<td>8</td>
<td>Octane</td>
<td>C_8H_{18}</td>
</tr>
<tr>
<td>9</td>
<td>Nonane</td>
<td>C_9H_{20}</td>
</tr>
<tr>
<td>10</td>
<td>Decane</td>
<td>$C_{10}H_{22}$</td>
</tr>
</tbody>
</table>

B. Structural Isomers
 1. Same formula, but the atoms are bonded together in a different order
 2. Different bonding order results in different properties

<table>
<thead>
<tr>
<th>C_4H_{10}</th>
<th>Butane</th>
<th>C_4H_{10}</th>
<th>2-methylpropane</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>H</td>
<td>C</td>
<td>H</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

C. Rules for Naming Alkanes (Nomenclature)
 1. For a branched hydrocarbon, the longest continuous chain of carbon atoms gives the root name for the hydrocarbon
 2. When alkane groups appear as substituents, they are named by dropping the -ane and adding -yl.
 3. The positions of substituent groups are specified by numbering the longest chain of carbon atoms sequentially, starting at the end closest to the branching.
 4. The location and name of each substituent are followed by the root alkane name. The substituents are listed in alphabetical order (irrespective of any prefix), and the prefixes di-, tri-, etc. are used to indicate multiple identical substituents.
D. Reactions of Alkanes
1. Combustion reactions
 a. \[2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(g)\]
2. Substitution reactions
 a. \[CH_4 + Cl_2 \xrightarrow{hv} CH_3Cl + HCl\]
 methane chloromethane
3. Dehydrogenation reactions
 a. \[CH_3CH_3 \xrightarrow{Cr_2O_3 \text{ at } 500^\circ C} CH_2 = CH_2 + H_2\]
 ethane ethylene

E. Cyclic Alkanes (Cycloalkanes)
1. Alkanes in which the carbon atoms are arranged in a ring, or cyclic, structures

 ![Cyclobutane](image1)
 ![Cyclopentane](image2)
 ![Cyclohexane](image3)

 a. The 90° angle in cyclobutane is not nearly tetrahedral, therefore the molecule is quite unstable
2. Nomenclature
 a. Rings are numbered to give the smallest substituent numbers possible
 b. Largest substituents are given the lowest possible numbers

22.2 Alkenes and Alkynes
A. Alkenes
1. Hydrocarbons that contain double bonds
 a. The simplest alkene is ethene, or ethylene (C_2H_4)
 b. Alkenes are nonpolar molecules

B. Geometric Isomers
1. Isomers in which the order of atom bonding is the same but the arrangement of atoms in space is different
2. A molecule can have a geometric isomer only if two carbon atoms in a rigid structure each have two different groups attached

 ![Cis 1,2-dichloroethane](image4)
 ![Trans 1,2-dichloroethane](image5)
3. In some isomer pairs, one isomer is biologically active, while the other is not (specificity of enzymes is the cause)

C. Alkynes
 1. Hydrocarbons with triple covalent bonds
 a. The simplest alkyne is ethyne, or acetylene (C₂H₂)

\[
\begin{align*}
\text{H} & \quad \text{C} \equiv \text{C} \quad \text{H} \\
\text{Ethyne}
\end{align*}
\]

 b. Alkynes are nonpolar molecules

D. Reactions of Alkenes and Alkynes
 1. Addition reactions
 a. Hydrogenation

\[
\begin{align*}
\text{CH}_2 = \text{CHCH}_3 + \text{H}_2 & \xrightarrow{\text{Catalyst}} \text{CH}_3\text{CH}_2\text{CH}_3 \\
\text{Propene} & \quad \text{Propane}
\end{align*}
\]

 b. Halogenation

\[
\begin{align*}
\text{CH}_2 = \text{CHCH}_2\text{CH}_2\text{CH}_3 + \text{Br}_2 & \rightarrow \text{CH}_2\text{BrCHBrCH}_2\text{CH}_2\text{CH}_3 \\
1-\text{Pentene} & \quad 1,2\text{-dibromopentene}
\end{align*}
\]

 c. Polymerization

 (1) small molecules are joined together to form a large molecule

22.3 Aromatic Hydrocarbons

A. Structure of Aromatics
 1. Hydrocarbons with six-membered carbon rings and delocalized electrons
 a. The simplest aromatic hydrocarbon is benzene (C₆H₆)

\[
\begin{align*}
\text{H} & \quad \text{H} \\
\text{H} & \quad \text{H}
\end{align*}
\]

 Benzene

 b. Aromatic hydrocarbons are nonpolar molecules

B. Geometric Isomerism
 1. ortho (o-) = two adjacent substituents
 2. meta (m-) = one carbon between substituents
 3. para (p-) = two carbons between substituents

\[
\begin{align*}
\text{Cl} & \quad \text{Cl} & \quad \text{Cl} \\
\text{Cl} & \quad \text{Cl} & \quad \text{Cl}
\end{align*}
\]

 o-dichlorobenzene m-dichlorobenzene p-dichlorobenzene
C. Reactions of Aromatic Hydrocarbons

1. Substitution reactions

\[
\text{CCL}_3 \xrightarrow{\text{Cl}_2 \text{ FeCl}_3} \text{Cl}
\]

22.4 Hydrocarbon Derivatives

<table>
<thead>
<tr>
<th>Class</th>
<th>Functional Group</th>
<th>General Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcohol</td>
<td>-OH</td>
<td>R - OH</td>
</tr>
<tr>
<td>Alkyl halide</td>
<td>-X</td>
<td>R - X</td>
</tr>
<tr>
<td>Ether</td>
<td>-O-</td>
<td>R - O - R'</td>
</tr>
<tr>
<td>Aldehyde</td>
<td></td>
<td>O \hspace{1cm} R - C - H</td>
</tr>
<tr>
<td>Ketone</td>
<td></td>
<td>O \hspace{1cm} R - C - R'</td>
</tr>
<tr>
<td>Carboxylic acid</td>
<td></td>
<td>O \hspace{1cm} R - C - OH</td>
</tr>
<tr>
<td>Ester</td>
<td></td>
<td>O \hspace{1cm} R - C - O - R'</td>
</tr>
<tr>
<td>Amine</td>
<td></td>
<td>R - N - R'' - R'</td>
</tr>
</tbody>
</table>
Examples:

- **Class: Ether**
 Name: dimethylether

- **Class: Ether**
 Name: diethylether

- **Class: Carboxylic acid**
 Name: ethanoic acid

- **Class: Alcohol**
 Name: ethanol (ethyl alcholol)

- **Class: Aldehyde**
 Name: methanaldehyde

- **Class: Carboxylic acid**
 Name: propanoic acid

- **Class: Ether**
 Name: ethylmethyleneether