Covalent Bonding - Orbitals
Hybridization - The Blending of Orbitals

Poodle + Cocker Spaniel = Cockapoo

s orbital + p orbital = sp orbital
What Proof Exists for Hybridization?

We have studied electron configuration notation and the sharing of electrons in the formation of covalent bonds.

Let's look at a molecule of methane, CH_4.

Methane is a simple natural gas. Its molecule has a carbon atom at the center with four hydrogen atoms covalently bonded around it.
Carbon ground state configuration

What is the expected orbital notation of carbon in its ground state?

Can you see a problem with this?

(Hint: How many unpaired electrons does this carbon atom have available for bonding?)
You should conclude that carbon only has **TWO** electrons available for bonding. That is not enough!

How does carbon overcome this problem so that it may form four bonds?
The first thought that chemists had was that carbon promotes one of its 2s electrons... to the empty 2p orbital.
A Problem Arises...

However, they quickly recognized a problem with such an arrangement...

Three of the carbon-hydrogen bonds would involve an electron pair in which the carbon electron was a 2p, matched with the lone 1s electron from a hydrogen atom.
Unequal bond energy

This would mean that three of the bonds in a methane molecule would be identical, because they would involve electron pairs of equal energy.

But what about the fourth bond...?
Unequal bond energy

The fourth bond is between a 2s electron from the carbon and the lone 1s hydrogen electron.

Such a bond would have slightly less energy than the other bonds in a methane molecule.
Unequal bond energy

This bond would be slightly different in character than the other three bonds in methane.

This difference would be measurable to a chemist by determining the bond length and bond energy.

But is this what they observe?
Enter Hybridization:

The simple answer is, “No”.

Measurements show that all four bonds in methane are equal. Thus, we need a new explanation for the bonding in methane.

Chemists have proposed an explanation— they call it Hybridization.

Hybridization is the combining of two or more orbitals of nearly equal energy within the same atom into orbitals of equal energy.
In the case of methane, they call the hybridization sp^3, meaning that an s orbital is combined with three p orbitals to create four equal \textit{hybrid orbitals}.

These new orbitals have slightly \textbf{MORE} energy than the $2s$ orbital...

...and slightly \textbf{LESS} energy than the $2p$ orbitals.

\textbf{sp}^3 \textit{Hybrid Orbitals}
Here is another way to look at the sp^3 hybridization and energy profile...
sp Hybrid Orbitals

While sp^3 is the hybridization observed in methane, there are other types of hybridization that atoms undergo.

These include *sp hybridization*, in which one s orbital combines with a single p orbital.

This produces two hybrid orbitals, while leaving two normal p orbitals.
Another hybrid is the sp^2, which combines two orbitals from a p sublevel with one orbital from an s sublevel.

One p orbital remains unchanged.
Hybridization Involving “d” Orbitals

Beginning with elements in the third row, “d’ orbitals may also hybridize

\[dsp^3 = \textbf{five} \] hybrid orbitals of equal energy

\[d^2sp^3 = \textbf{six} \] hybrid orbitals of equal energy
Hybridization and Molecular Geometry

<table>
<thead>
<tr>
<th>Forms</th>
<th>Overall Structure</th>
<th>Hybridization of “A”</th>
</tr>
</thead>
<tbody>
<tr>
<td>AX_2</td>
<td>Linear</td>
<td>sp</td>
</tr>
<tr>
<td>AX_3, AX_2E</td>
<td>Trigonal Planar</td>
<td>sp^2</td>
</tr>
<tr>
<td>AX_4, AX_3E, AX_2E_2</td>
<td>Tetrahedral</td>
<td>sp^3</td>
</tr>
<tr>
<td>$AX_5, AX_4E, AX_3E_2, AX_2E_3$</td>
<td>Trigonal bipyramidal</td>
<td>dsp^3</td>
</tr>
<tr>
<td>AX_6, AX_5E, AX_4E_2</td>
<td>Octahedral</td>
<td>d^2sp^3</td>
</tr>
</tbody>
</table>

$A = \text{central atom}$

$X = \text{atoms bonded to } A$

$E = \text{nonbonding electron pairs on } A$
Sigma and Pi Bonds

Sigma (σ) bonds exist in the region directly between two bonded atoms.

Pi (π) bonds exist in the region above and below a line drawn between two bonded atoms.

<table>
<thead>
<tr>
<th>Bond Type</th>
<th>Bond Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single bond</td>
<td>1 sigma bond</td>
</tr>
<tr>
<td>Double Bond</td>
<td>1 sigma, 1 pi bond</td>
</tr>
<tr>
<td>Triple Bond</td>
<td>1 sigma, 2 pi bonds</td>
</tr>
</tbody>
</table>
Sigma and Pi Bonds

Single Bonds

Ethane

1 σ bond
Sigma and Pi Bonds: Double bonds

Ethene

1 σ bond

1 π bond
Sigma and Pi Bonds

Triple Bonds

H – C = = = C – H

Ethyne

1 σ bond

1 π bond

1 π bond
The De-Localized Electron Model

Pi bonds (π) contribute to the delocalized model of electrons in bonding, and help explain resonance.

Electron density from π bonds can be distributed symmetrically all around the ring, above and below the plane.