Chapter 7 Practice Worksheet

(no polyelectronic atoms or trends)

1. An FM radio station has a frequency of 88.9 MHz (1 $MHz = 10^6 Hz$, or cycles per second). What is the wavelength of this radiation in meters?

- 2. The most prominent line in the spectrum of neon is found at 865.438 nm. Other lines are found at 837.761 nm, 878.062 nm, 878.438 nm, and 1885.387 nm.
 - (a) Which of these lines represents the most energetic light?
 - (b) What is the frequency of the most prominent line? What is the energy of one photon of this wavelength?

3. Calculate the wavelength (in nanometers) associated with a 1.0×10^2 -g golf ball moving at 30. m/s (about 67 mph). How fast must the ball travel to have a wavelength of 5.6 x 10^{-3} nm?

4. Calculate the energy of an electron in the n=2 energy level of hydrogen. Calculate the energy of an electron in the n=3 energy level. What is the difference in energy of these two levels? If a photon of light had this energy, what would its wavelength be?

5. Rank the following orbitals in the H atom in order of increasing energy: 3s, 2s, 2p, 4s, 3p, 1s, and 3d.

6. How many orbitals in an atom can have the following quantum number or designation?

a)	3p	e)	5d
b)	4p	f)	5f
c)	4p _x	g)	n = 5
d)	6d	h)	7s

7. When n = 3, I can have values of _____.
For the 3d orbital, I has a value of _____.
When n = 4, I can have values of _____.
For the 4p orbital, I has a value of _____.

When $n = 2$,	can have values of	
For the 2s ort	pital, I has a value of	

Chapter 7 Practice Worksheet (no polyelectronic atoms or trends)