Electrochemical Cell Voltage

How do changes in concentration within a cell change the voltage of the cell?

Why?

Batteries are simply electrochemical cells in a compact container. The most common are sold as 9-volt or 1.5-volt, but are these voltages reliable? Does the voltage of an electrochemical cell stay constant as the cell runs towards equilibrium? Can an electrochemical cell have a voltage other than its standard voltage?

Model 1 – Zinc and Copper Cell

 $Zn(s) + Cu^{2+}(aq) \leftrightarrow Zn^{2+}(aq) + Cu(s) = 1.100 V$

Time (min)	[Cu ²⁺] (M)	[Zn ²⁺] (M)	Voltage (V)
1	1.750	0.250	1.123
2	1.500	0.500	1.113
3	1.250	0.750	1.106
4	1.000	1.000	1.100
5	0.750	1.250	1.094
6	0.500	1.500	1.087
7	0.250	1.750	1.077

- 1. Is the cell in Model 1 spontaneous or not? Use evidence from Model 1 to justify your answer.
- 2. Is the reaction in Model 1 favoring the reverse direction at any point during the experiment? Justify your answer.
- 3. Refer to Model 1.
 - a. What is the standard cell potential for the reaction between zinc and copper?
 - *b.* What are the concentrations of the zinc and copper solutions when the standard cell potential is obtained?

4. Sketch how the $Zn^{2+}(aq)/Cu(s)$ electrochemical cell in Model 1 may appear in a lab setup. Label the electrodes and solutions. Include a voltmeter in your drawing.

- 5. Is the reaction in Model 1 at equilibrium at any point during the experiment? If no, in which direction must the reaction proceed to reach equilibrium?
- 6. According to the data in Model 1, does an electrochemical cell provide a constant voltage as it proceeds?
- 7. Would you expect a 9-V battery to always provide 9 V? Justify your reasoning.

STOP

Model 2 – Concentration Effects in a Cell

Zn (s) +	Cu ²⁺	(aq)	\leftrightarrow	Zn^{2+}	(aq)	+	Cu (s	s) E °	=	1.100	V
-------	-----	------------------	------	-------------------	-----------	------	---	-------	---------------	---	-------	---

Trial	Initial [Cu ²⁺] (M)	Initial [Zn ²⁺] (M)	Voltage (V)
1	1.00	0.25	1.116
2	1.00	0.50	1.108
3	1.00	0.75	1.103
4	1.00	1.00	1.100
5	0.75	1.00	1.097
6	0.50	1.00	1.092
7	0.25	1.00	1.084

8. In trials 1–7 in Model 2, what variables in the cell have been changed?

- 9. Consider the data in Model 2.
 - *a.* Based on the principles of LeChâtelier, in which direction would you predict the reaction to shift when the concentration of copper ions is decreased?
 - *b.* What happens to the cell's potential (voltage) when the concentration of copper ions is decreased?
 - *c.* Based on the principles of LeChâtelier, in which direction would you predict the reaction to shift when the concentration of zinc ions is decreased?
 - d. What happens to the cell's potential when the concentration of zinc ions is decreased?
- 10. Predict the effect on the cell's potential when the concentration of copper ions is increased. Use LeChâtelier's Principle to justify your prediction.
- 11. Using the reaction in Model 1, estimate the conditions that would be required to achieve a cell potential of 1.00 V.
- 12. Consider the following reaction:

 $F_2(g) + 2Cl^{1-}(aq) \leftrightarrow 2F^{1-}(aq) + Cl_2(g) \quad E^\circ = 1.51 \text{ V}$

- *a*. Describe the conditions that would provide a voltage of 1.51 V.
- b. Identify two changes to the cell that would increase the potential of the cell.
- c. Identify two changes to the cell that would decrease the potential of the cell.

STOP

Extension Questions

Model 3 – Chromium and Zinc

Trial	Initial [Cr ³⁺] (M)	Initial [Zn ²⁺] (M)	Voltage (V)		
1	1.00×10^{-3}	1.00	-0.034		
2	1.00×10^{-2}	1.00	-0.016		
3	$1.00 imes 10^{-1}$	1.00	0.002		
4	1.00	1.00	0.020		
5	1.00	$1.00 imes 10^{-1}$	0.047		
6	1.00	1.00×10^{-2}	0.074		
7	1.00	1.00×10^{-3}	0.101		

 $3Zn(s) + 2Cr^{3+}(aq) \leftrightarrow 2Cr(s) + 3Zn^{2+}(aq) E^{\circ} = 0.020 V$

- 13. Under standard conditions, is the reaction in Model 3 spontaneous? Justify your answer.
- 14. Describe a set of estimated conditions that would allow the reaction in Model 3 to be at equilibrium.
- 15. According to Model 3, is it possible to make the reaction in Model 3 nonspontaneous? If yes, what was done to make this happen?
- 16. Are the data in Model 3 consistent with LeChâtelier's principle? Justify your reasoning.