Chapter 12 - Chemical Kinetics

12.1 Reaction Rates

- A. Chemical kinetics
 - 1. Study of the speed with which reactants are converted to products
- B. Reaction Rate
 - 1. The change in concentration of a reactant or product per unit of time

$$Rate = \frac{concentration \ of \ A \ at \ time \ t_2 - concentration \ of \ A \ at \ time \ t_1}{t_2 - t_1} = \frac{\Delta[A]}{\Delta t}$$

- a. Rates decrease with time
- b. It is customary to express reaction rates as positive values
- c. Instantaneous rate can be determined by finding the slope of a line tangent to a point representing a particular time
- C. Decomposition of NO₂

Time (s)

Rate of consumption of NO_2 = rate of production of NO = 2(rate of production of O_2)

$$-\frac{\Delta[NO_2]}{\Delta t} = \frac{\Delta[NO]}{\Delta t} = 2\left(\frac{\Delta[O_2]}{\Delta t}\right)$$

12 2	Rate	l aws:	Αn	Introd	luction
1 4 . 4	. 1 \catc	Lavo.	\neg	111111	1111711

- A. Reversibility of reactions
 - 1. For the reaction $2NO_2(g) \rightarrow 2NO(g) + O_2(g)$ The reverse reaction $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$ may also take place
 - 2. The reverse reaction effects the rate of change in concentrations
 - a. Δ [A] depends on the difference in the rates of the forward and reverse reactions
- B. Rate Law (Ignoring reverse reaction)
 - 1. Rate = $k[NO_2]^n$
 - a. *k* is a proportionality constant called the rate constant *n* is the order of the reactant (an integer, including zero, or a fraction)
 - (1) k and n must be determined experimentally
 - 2. Concentrations of products do not appear in the rate law
- C. Types of Rate Laws
 - 1. Differential Rate Law (Rate Law)
 - a. Expresses how the rate of a reaction depends upon concentration Rate = $k[NO_2]^n$
 - 2. Integrated Rate Law
 - a. Expresses how the concentration of a species (reactant or product) in a reaction depend on time

$$-\frac{\Delta[NO_2]}{\Delta t} = \frac{\Delta[NO]}{\Delta t} = 2\left(\frac{\Delta[O_2]}{\Delta t}\right)$$

3. Choice of rate law depends on what data is easiest to collect

12.3 Determining the Form of the Rate Law

- A. Determining the value of *n* (Order of the reactant)
 - 1. Example

[A]	Rate (mol/L·s)
1.00 <i>M</i>	8.4 x 10 ⁻³
0.50 <i>M</i>	2.1 x 10 ⁻³

a. Doubling the concentration of species A quadruples the rate of the reaction. Therefore, the reaction is of second order with respect to A

Rate =
$$k[A]^2$$

- B. Method of Initial Rates
 - 1. Initial rate
 - a. Instantaneous rate just after t = 0
 - 2. Experimental method
 - a. Vary initial concentration of reactant(s)
 - b. Determine initial rate for each concentration
 - c. Examine relationship between rate and initial concentration

^{***}Why study rate law? Re-read the paragraph at the bottom of page 556.

3. Example:

Table 12-4 Intial Rates from Three Experiments for the Reaction: $NH_4^+(aq) + NO_2^-(aq) \rightarrow N_2(g) + 2H_2O(I)$					
Experiment	Initial	Initial			
	Concentration	Concentration	Initial rate		
	Of NH ₄ ⁺	Of NO ₂	(mol/L⋅s)		
1	0.100 <i>M</i>	0.0050 <i>M</i>	1.35 x 10 ⁻⁷		
2	0.100 <i>M</i>	0.010 <i>M</i>	2.70 x 10 ⁻⁷		
3	0.200 <i>M</i>	0.010 <i>M</i>	5.40 x 10 ⁻⁷		

- a. In experiment 1 and 2, the concentration of NH₄⁺ is held constant
- b. In experiment 2 and 3, the concentration of NO₂⁻ is held constant
- c. Basic rate law for the reaction:

Rate =
$$k[NH_4^+]^n[NO_2^-]^m$$

- 4. Calculations
 - a. Experiment 1 and 2
 - (1) Rate doubles when concentration of NO₂ doubles
 - (2) m = 1 (first order)
 - b. Experiment 2 and 3
 - (1) Rate doubles when concentration of NH₄⁺ doubles
 - (2) n = 1 (first order)
- Overall reaction order
 - a. Overall reaction order is the sum of m and n
 - (1) m + n = 2 so overall the reaction is second order Rate = $k[NH_4^+][NO_2^-]$
- 6. Calculate *k*, the rate constant
 - a. Rate is known
 - b. Both concentrations are known

c. Exponents are known
1.35 x
$$10^{-7}$$
 mol/L·s = $k(0.100 M)(0.0050 M)$

$$k = \frac{1.35 \times 10^{-7} \text{ mol/L} \cdot \text{s}}{(0.100 \, M)(0.0050 \, M)}$$

- 12.4 The Integrated Rate Law
 - A. Integrated First-Order Rate Law (single reactant)

1.
$$\ln[A] = -kt + \ln[A]_0$$
 or $\ln\left(\frac{[A]_0}{[A]}\right) = kt$

- a. [A] is concentration of reactant A at time = t
- b. $[A]_0$ is concentration of reactant A at t = 0
- c. Equation is linear (y = mx + b)
- 2. Half-life of a First-Order Reaction
 - a. Half life of a reaction is the time required for a reactant to reach half its original concentration

$$\ln\left(\frac{\left[A\right]_{0}}{\left[A\right]}\right) = kt \quad \Rightarrow \quad \left[A\right] = \frac{\left[A\right]_{0}}{2} \quad \Rightarrow \quad \ln\left(\frac{\left[A\right]_{0}}{\left[A\right]_{0}/2}\right) = kt_{1/2} \quad \Rightarrow \quad \ln\left(2\right) = kt_{1/2} \quad \Rightarrow \quad t_{1/2} = \frac{\ln(2)}{k}$$

B. Integrated Second-Order Rate Law (single reactant)

1.
$$\frac{1}{[A]} = kt + \frac{1}{[A]_0}$$

- a. Graph of 1/[A] versus *t* is a straight line with slope k
- 2. Half-life of a Second-Order Reaction (derivation on page 567)

a.
$$t_{1/2} = \frac{1}{k[A]_0}$$

- b. For a second-order reaction each successive half-life is double the preceding one
- C. Zero Order reactions
 - 1. Rate is constant; it does not change with changing concentration
 - 2. Zero order sometimes happens with catalysis
 - 3. Integrated rate law for zero-order reactions

a.
$$[A] = -kt + [A]_0$$

4. Half-life of a zero-order reaction

a.
$$t_{1/2} = \frac{[A]_0}{2k}$$

- D. Integrated Rate Laws for Reactions with More than One Reactant
 - 1. Examine rate with one reactant in very low concentration and the others much higher

Rate =
$$k[A]^n[B]^m[C]^p$$

a. If [B]>>[A] and [C]>>[A] then [B] and [C] do not change as greatly relative to [A] so...

Rate =
$$k'[A]^n$$

- 2. Pseudo-first-order rate law (or zero-order, or second-order)
 - a. Simplification yields a rate law of a particular order

12.5 Rate Laws: A Summary

No Notes - This is review. Rate law problems are a virtual certainty on the AP test. Bookmark this section and review it thoroughly prior to the exam!

12.6 Reaction Mechanisms

- A. Reaction Mechanism
 - 1. A series of elementary steps that must satisfy two requirements

4

- a. The sum of the elementary steps must give the overall balanced equation for the reaction
- b. The mechanism must agree with the experimentally determined rate law
- B. Intermediates
 - 1. A species that is neither a reactant nor a product, but that is formed and consumed during a chemical reaction
- C. Elementary steps
 - 1. Reactions whose rate law can be written from their molecularity (balanced eqn for the step)

D. Molecularity

- 1. The number of species that must collide to produce the reaction indicated by that step
 - a. Unimolecular step a reaction involving one molecule
 - b. Bimolecular step reaction involving the collisions of two species
 - c. Termolecular step reaction involving the collisions of three species

Table 12.7 Examples of Elementary Steps				
Elementary Step	Molecularity	Rate Law		
A → products	Unimolecular	Rate = $k[A]$		
$A + A \rightarrow products$	Bimolecular	Rate = $k[A]^2$		
(2A → products)				
A + B → products	Bimolecular	Rate = k [A][B]		
$A + A + B \rightarrow products$	Termolecular	Rate = $k[A]^2[B]$		
(2A + B → products)				
$A + B + C \rightarrow products$	Termolecular	Rate = $k[A][B][C]$		

E. Rate-Determining Step

1. The slowest step in a reaction determines the rate of the reaction

F. Example

1. Overall rxn:

$$NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$$

2. Rate law determined experimentally:

Rate =
$$k[NO_2]^2$$

3. Elementary Steps

$$NO_2(g) + NO_2(g) \xrightarrow{k_1} NO_3(g) + NO(g)$$

 $NO_3(g) + CO(g) \xrightarrow{k_2} NO_2(g) + CO_2(g)$

- 4. Which step is rate determining?
 - a. IF step 1, Rate = $k[NO_2]^2$
 - (1) this agrees with experimental results
 - b. IF step 2, Rate = $k[NO_3][CO]$
 - (1) this does not agree with experimental results

12.7 A Model for Chemical Kinetics

- A. Collision Model
 - 1. Molecules must collide in order to react
 - a. They must collide with sufficient energy
 - b. They must collide with correct orientation
- B. Activation Energy (E_a)
 - 1. The energy required to convert atoms or molecules into the activated complex (transition state)
 - 2. The minimum energy required for an effective collision
- C. The Arrhenius Equation
 - 1. Form #1: $k = zpe^{-E_a/RT}$
 - a. zis collision frequency
 - b. *p* is the stearic factor representing the fraction of collisions with correct orientation

- 2. Form #2: $k = Ae^{-E_a/RT}$
 - a. z and p are combined to make A, the frequency factor (frequency of effective collisions)
- 3. Taking the natural log of both sides:

$$\ln(k) = \ln(Ae^{-E_a/RT})$$

$$\ln(k) = \ln(A) + \ln(e^{-E_a/RT})$$

$$\ln(k) = -\frac{E_a}{R} \left(\frac{1}{T}\right) + \ln(A)$$

a. Linear equation

$$y = ln(k)$$
 slope = $-E_a/R$ $x = 1/T$ intercept = $ln(A)$

12.8 Catalysis

- A. Catalysts
 - 1. A substance that speeds up a reaction without being consumed itself
- B. Effects of Catalysis
 - 1. Catalysts lower activation energy but do not change ΔE for the reaction
 - 2. Catalysts provide alternate reaction pathways
 - 3. Catalysis results in a higher percentage of effective collisions
- C. Heterogeneous Catalysis (usually gaseous reactants on a solid surface)
 - 1. Four steps
 - a. Adsorption and activation of the reactants
 - (1) Adsorption refers to the collection of one substance on the surface of another substance
 - b. Migration of the adsorbed reactants on the surface
 - c. Reaction of the adsorbed substances
 - d. Escape, or desorption, of the products
 - 2. Uses
 - a. Conversion of alkenes to alkanes
 - b. Conversion of CO and NO in auto exhaust to CO₂ and N₂
- D. Homogeneous Catalysis
 - 1. Reactants and catalysts are in the same phase
 - 2. Example The decomposition of ozone

a. Freon,
$$CCl_2F_2(g) \xrightarrow{light} CClF_2(g) + Cl(g)$$

b. Chlorine catalyzes the decomposition of ozone

$$\begin{array}{c} Cl(g) + O_3(g) \rightarrow ClO(g) + O_2(g) \\ \underline{O(g) + ClO(g)} \rightarrow Cl(g) + \underline{O_2(g)} \\ O(g) + O_3(g) \rightarrow 2O_2(g) \end{array}$$

c. Notice that the Cl(g) is not used up, a qualification for it to be catalytic. This is also why small amounts of chlorofluorocarbons such as freon can do immense damage to the ozone layer