Rate Laws

Differential rate laws express (reveal) the relationship between the concentration of reactants and the rate of the reaction.

The <u>differential rate law</u> is usually just called "<u>the rate law</u>."

<u>Integrated rate laws</u> express (reveal) the relationship between concentration of reactants and time

Writing a (differential) Rate Law Problem - Write the rate law, determine the value of the rate constant, k, and the overall order for the following reaction:

Experiment	[NO] (mol/L)	[Cl ₂] (mol/L)	Rate Mol/L·s
1	0.250	0.250	1.43 × 10 ⁻⁶
2	0.500	0.250	5.72 × 10 ⁻⁶
3	0.250	0.500	2.86 × 10 ⁻⁶
4	0.500	0.500	11.4×10^{-6}

$2 \operatorname{NO}(g) + \operatorname{Cl}_2(g) \rightarrow 2 \operatorname{NOCl}(g)$

Writing a Rate Law Part 1 - Determine the values for the exponents in the rate law: $R = k[NO] \cdot [Cl_2]^{\gamma}$

Experiment	[NO]	[Cl ₂]	Rate
	(mol/L)	(mol/L)	Mol/L · s
1	0.250	0.250	1.43 × 10 ⁻⁶
2	0.500	0.250	5.72 × 10 ⁻⁶
3	0.250	0.500	2.86 × 10 ⁻⁶
4	0.500	0.500	1.14 × 10 ⁻⁵

In experiment 1 and 2, $[Cl_2]$ is constant while [NO] doubles. The rate quadruples, so the reaction is second order with respect to [NO] $\therefore R = k[NO]^2[Cl_2]^{\gamma}$

Writing a Rate Law Part 1 - Determine the values for the exponents in the rate law: $R = k[NO]^2[Cl_2]^{\gamma}$

Experiment	[NO]	[Cl ₂]	Rate
	(mol/L)	(mol/L)	Mol/L·s
1	0.250	0.250	1.43 x 10 ⁻⁶
2	0.500	0.250	5.72 × 10 ⁻⁶
3	0.250	0.500	2.86 x 10 ⁻⁶
4	0.500	0.500	1.14 × 10 ⁻⁵

In experiment 2 and 4, [NO] is constant while $[Cl_2]$ doubles. The rate doubles, so the reaction is first order with respect to $[Cl_2]$ $\therefore R = k[NO]^2[Cl_2]$

Writing a Rate Law Part 2 - Determine the value for k, the rate constant, by using any set of experimental data:

 $\mathbf{R} = \mathbf{k}[\mathbf{NO}]^2[\mathbf{CI}_2]$

Experiment	[NO]	[Cl ₂]	Rate
A ALTON	(mol/L)	(mol/L)	Mol/L·s
1	0.250	0.250	1.43 x 10 ⁻⁶

$$1.43 x 10^{-6} \frac{mol}{L \cdot s} = k \left(0.250 \frac{mol}{L} \right)^2 \left(0.250 \frac{mol}{L} \right)$$

$$k = \left(\frac{1.43 \, x \, 10^{-6}}{0.250^3}\right) \left(\frac{mol}{L \cdot s}\right) \left(\frac{L^3}{mol^3}\right) = 9.15 \, x \, 10^{-5} \, \frac{L^2}{mol^2 \cdot s}$$

Writing a Rate Law Part 3 - Determine the overall order for the reaction.

 $\mathbf{R} = \mathbf{k}[\mathbf{NO}]^2[\mathbf{CI}_2]$

2 + 1 = 3

... The reaction is 3rd order

Overall order is the sum of the exponents, or orders, of the reactants