Unit 2 – Biodiversity I Standards

Biology 6. Ecology. *Ecology* is the study of relationships among living organ-isms and their interactions with the physical environment. These relationships are in a constant state of flux, and even small changes can cause effects throughout the ecosystem. Students in grades nine through twelve can be taught to think of ecology as changing relationships among the components of an ecosystem. Students also need to recognize that humans are participants in these ecosystem relationships, not just observers. A goal of classroom teaching should be to develop a strong scientific understanding of ecology to establish the basis for making in-formed and valid decisions.

6. Stability in an ecosystem is a balance between competing effects. As a basis for understanding this concept:

6a. *Students know* biodiversity is the sum total of different kinds of organisms and is affected by alterations of habitats.

Biodiversity refers to the collective variety of living organisms in an ecosystem. This structure is influenced by alterations in habitat, including but not limited to climatic changes, fire, flood, and invasion by organisms from another system. The more biodiversity in an ecosystem, the greater its stability and resiliency. The best way for students to learn about ecology is to master the principles of the subject through careful study and then to make firsthand observations of ecosystems in action over time.

Although field trips are the ideal way to implement this process and should be encouraged, even career scientists often use models to study ecology. Local ecologists from government, private industry, or university programs may also be willing to serve as guest speakers in the classroom. Viewing the Internet's many virtual windows that show actual ecological experiments can also help students understand the scientific basis of ecology.

6b. Students know how to analyze changes in an ecosystem resulting from changes in climate, human activity, introduction of nonnative species, or changes in population size.

Analysis of change can help people to describe and understand what is happening in a natural system and, to some extent, to control or influence that system. Understanding different kinds of change can help to improve predictions of what will happen next. Changes in ecosystems often manifest themselves in predictable patterns of climate, seasonal reproductive cycles, population cycles, and migrations. However, unexpected disturbances caused by human intervention or the introduction of a new species, for example, may destabilize the often complex and delicate balance in an ecosystem.

Analyzing changes in an ecosystem can require complex methods and techniques because variation is not necessarily simple and may be interrelated with changes or trends in other factors. Rates and patterns of change, including trends, cycles, and irregularities, are essential features of the living world and are useful indicators of change that can provide data for analysis. Often it is important to analyze change over time, a process called *longitudinal analysis*.

6c. *Students know* how fluctuations in population size in an ecosystem are determined by the relative rates of birth, immigration, emigration, and death.

Fluctuations in the size of a population are often difficult to measure directly but may be estimated by measuring the relative rates of birth, death, immigration, and emigration in a population. The number of deaths and emigrations over time will decrease a population's size, and the number of births and immigrations over time will increase it. Comparing rates for death and emigration with those for birth and immigration will determine whether the population shows a net growth or a decline over time.

6e. Students know a vital part of an ecosystem is the stability of its producers and decomposers.

An ecosystem's producers (plants and photosynthetic microorganisms) and decomposers (fungi and microorganisms) are primarily responsible for the productivity and recycling of organic matter, respectively. Conditions that threaten the stability of producer and decomposer populations in an ecosystem jeopardize the availability of energy and the capability of matter to recycle in the rest of the biological community. To study the interaction between producers and decomposers, students can set up a closed or restricted ecosystem, such as a worm farm, a composting system, a terrarium, or an aquarium.

6f. *Students know* at each link in a food web some energy is stored in newly made structures but much energy is dissipated into the environment as heat. This dissipation may be represented in an energy pyramid.

The energy pyramid illustrates how stored energy is passed from one organism to another. At every level in a food web, an organism uses energy metabolically to survive and grow, but much is released as heat, usually about 90 percent. At every link in a food web, energy is transferred to the next level, but typically only 10 per-cent of the energy from the previous level is passed on to the consumer.