H

Order of reaction and half-life

RATE EXPRESSIONS

The rate of reaction between two reactants, A and B, can be followed experimentally. The rate will be found to be proportional to the concentration of A raised to some power and also to the concentration of B raised to a power. If square brackets are used to denote concentration this can be written as rate $\propto [A]^x$ and rate $\propto [B]^y$. They can be combined to give the rate expression:

$$rate = k[A]^x[B]^y$$

where k is the constant of proportionality and is known as the **rate constant**.

x is known as the order of the reaction with respect to A.

y is known as the order of the reaction with respect to B.

The overall order of the reaction = x + y.

Note: the order of the reaction and the rate expression can only be determined experimentally. They cannot be deduced from the balanced equation for the reaction.

UNITS OF RATE CONSTANT

The units of the rate constant depend on the overall order of the reaction.

First order: rate = k[A]

$$k = \frac{\text{rate}}{[A]} = \frac{\text{mol dm}^{-3} \text{ s}^{-1}}{\text{mol dm}^{-3}} = \text{s}^{-1}$$

Second order: rate = $k[A]^2$ or k = [A][B]

$$k = \frac{\text{rate}}{[A]^2} = \frac{\text{mol dm}^{-3} \text{ s}^{-1}}{(\text{mol dm}^{-3})^2} = \text{dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$$

Third order: rate = $k[A]^2[B]$ or rate = $k[A][B]^2$

$$k = \frac{\text{rate}}{[A]^2[B]} = \frac{\text{mol dm}^{-3} \text{ s}^{-1}}{(\text{mol dm}^{-3})^3} = \text{dm}^6 \text{ mol}^{-2} \text{ s}^{-1}$$

GRAPHICAL REPRESENTATIONS OF REACTIONS

zero order

[A]

rate

DERIVING A RATE EXPRESSION BY INSPECTION OF DATA

Experimental data obtained from the reaction between hydrogen and nitrogen monoxide at 1073 K:

$$2H_2(g) + 2NO(g) \rightarrow 2H_2O(g) + N_2(g)$$

0.00	57.1 177.1		
Experiment	Initial concentration of H ₂ (g) / mol dm ⁻³	Initial concentration of NO(g) / mol dm ⁻³	Initial rate of formation of N ₂ (g) / mol dm ⁻³ s ⁻¹
1	1×10^{-3}	6×10^{-3}	3×10^{-3}
2	2×10^{-3}	6×10^{-3}	6×10^{-3}
3	6×10^{-3}	1×10^{-3}	0.5×10^{-3}
4	6×10^{-3}	2×10^{-3}	2.0×10^{-3}

From experiments 1 and 2 doubling $[H_2]$ doubles the rate so rate $\approx [H_3]$.

From experiments 3 and 4 doubling [NO] quadruples the rate so rate \propto [NO]².

Rate expression given by rate = $k[H_2][NO]^2$.

The rate is first order with respect to hydrogen, second order with respect to nitrogen monoxide, and third order overall. The value of *k* can be found by substituting the values from any one of the four experiments:

$$k = \frac{\text{rate}}{[H_2][NO]^2} = 8.33 \times 10^4 \,\text{dm}^3 \,\text{mol}^{-1} \,\text{s}^{-1}$$

HALF-LIFE t

For a first order reaction the rate of change of concentration of A is equal to k[A]. This can be expressed as $\frac{d[A]}{dt} = k[A]$.

If this expression is integrated then $kt = \ln [A]_o - \ln [A]$ where $[A]_o$ is the initial concentration and [A] is the concentration at time t. This expression is known as the integrated form of the rate equation.

The half-life is defined as the time taken for the concentration of a reactant to fall to half of its initial value.

At $t_{\frac{1}{2}}$ [A] = $\frac{1}{2}$ [A]_o the integrated rate expression then becomes $kt_{\frac{1}{2}} = \ln [A]_o - \ln \frac{1}{2} [A]_o = \ln 2$ since $\ln 2 = 0.693$ this simplifies to $t_{\frac{1}{2}} = \frac{0.693}{k}$

From this expression it can be seen that the half-life of a first order reaction is independent of the original concentration of A, i.e. first order reactions have a constant half-life.

