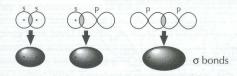
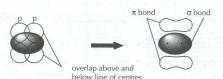


Molecular orbitals and hybridization (1)

OVERLAP OF ATOMIC ORBITALS TO FORM MOLECULAR ORBITALS

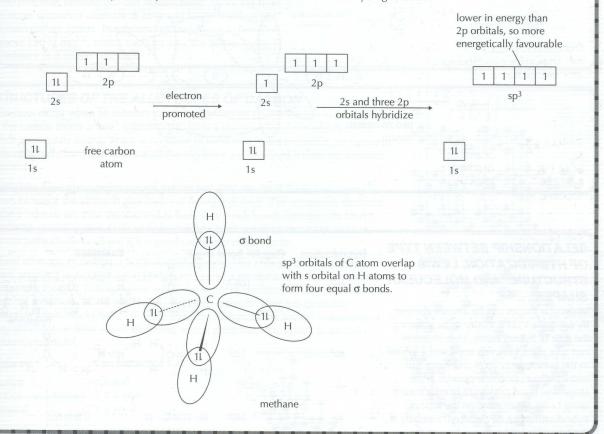

Although the Lewis representation is a useful model to represent covalent bonds it does make the false assumption that all the valence electrons are the same. A more advanced model of bonding considers the combination of atomic orbitals to form molecular orbitals.


σ bonds

A σ (sigma) bond is formed when two atomic orbitals on different atoms overlap along a line drawn through the two nuclei. This occurs when two s orbitals overlap, an s orbital overlaps with a p orbital, or when two p orbitals overlap 'head on'.

π bonds

A π (pi) bond is formed when two p orbitals overlap 'sideways on'. The overlap now occurs above and below the line drawn through the two nuclei. A π bond is made up of two regions of electron density.



HYBRIDIZATION (1)

sp³ hybridization

Methane provides a good example of sp^3 hybridization. Methane contains four equal C–H bonds pointing towards the corners of a tetrahedron with bond angles of 109.5° . A free carbon atom has the configuration $1s^22s^22p^2$. It cannot retain this configuration in methane. Not only are there only two unpaired electrons, but the p orbitals are at 90° to each other and will not give bond angles of 109.5° when they overlap with the s orbitals on the hydrogen atoms.

When the carbon bonds in methane one of its 2s electrons is promoted to a 2p orbital and then the 2s and three 2p orbitals *hybridize* to form four new hybrid orbitals. These four new orbitals arrange themselves to be as mutually repulsive as possible, i.e. tetrahedrally. Four equal σ bonds can then be formed with the hydrogen atoms.

