## CHEMISTRY HIGHER LEVEL PAPER 1

Monday 18 November 2002 (afternoon)

1 hour

## INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.

882-152 17 pages

## 1

## **Periodic Table**

| 1<br><b>H</b><br>1.01     |                           |                             |                           | Atomic                    | Number                    |                           |                           |                           |                           |                           |                           |                           |                           |                           |                           |                          | 2<br>He<br>4.00           |
|---------------------------|---------------------------|-----------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--------------------------|---------------------------|
| 3<br><b>Li</b><br>6.94    | 4<br><b>Be</b><br>9.01    |                             |                           | Atomi                     | c Mass                    |                           |                           |                           |                           |                           |                           | 5<br><b>B</b><br>10.81    | 6<br><b>C</b><br>12.01    | 7<br><b>N</b><br>14.01    | 8<br><b>O</b><br>16.00    | 9<br><b>F</b><br>19.00   | 10<br><b>Ne</b><br>20.18  |
| 11<br><b>Na</b><br>22.99  | 12<br><b>Mg</b><br>24.31  |                             |                           |                           |                           |                           |                           |                           |                           |                           |                           | 13<br><b>Al</b><br>26.98  | 14<br><b>Si</b><br>28.09  | 15<br><b>P</b><br>30.97   | 16<br>S<br>32.06          | 17<br><b>Cl</b><br>35.45 | 18<br><b>Ar</b><br>39.95  |
| 19<br><b>K</b><br>39.10   | 20<br><b>Ca</b><br>40.08  | 21<br><b>Sc</b><br>44.96    | 22<br><b>Ti</b><br>47.90  | 23<br>V<br>50.94          | 24<br><b>Cr</b><br>52.00  | 25<br><b>Mn</b><br>54.94  | 26<br>Fe<br>55.85         | 27<br><b>Co</b><br>58.93  | 28<br><b>Ni</b><br>58.71  | 29<br><b>Cu</b><br>63.55  | 30<br><b>Zn</b><br>65.37  | 31<br><b>Ga</b><br>69.72  | 32<br><b>Ge</b><br>72.59  | 33<br><b>As</b><br>74.92  | 34<br><b>Se</b><br>78.96  | 35<br><b>Br</b><br>79.90 | 36<br><b>Kr</b><br>83.80  |
| 37<br><b>Rb</b><br>85.47  | 38<br><b>Sr</b><br>87.62  | 39<br><b>Y</b><br>88.91     | 40<br><b>Zr</b><br>91.22  | 41<br><b>Nb</b><br>92.91  | 42<br><b>Mo</b><br>95.94  | 43<br><b>Tc</b><br>98.91  | 44<br><b>Ru</b><br>101.07 | 45<br><b>Rh</b><br>102.91 | 46<br><b>Pd</b><br>106.42 | 47<br><b>Ag</b><br>107.87 | 48<br><b>Cd</b><br>112.40 | 49<br><b>In</b><br>114.82 | 50<br><b>Sn</b><br>118.69 | 51<br><b>Sb</b><br>121.75 | 52<br><b>Te</b><br>127.60 | 53<br>I<br>126.90        | 54<br><b>Xe</b><br>131.30 |
| 55<br><b>Cs</b><br>132.91 | 56<br><b>Ba</b><br>137.34 | 57 †<br><b>La</b><br>138.91 | 72<br><b>Hf</b><br>178.49 | 73<br><b>Ta</b><br>180.95 | 74<br><b>W</b><br>183.85  | 75<br><b>Re</b><br>186.21 | 76<br><b>Os</b><br>190.21 | 77<br><b>Ir</b><br>192.22 | 78<br><b>Pt</b><br>195.09 | 79<br><b>Au</b><br>196.97 | 80<br><b>Hg</b><br>200.59 | 81<br>Tl<br>204.37        | 82<br><b>Pb</b><br>207.19 | 83<br><b>Bi</b><br>208.98 | 84<br><b>Po</b><br>(210)  | 85<br><b>At</b><br>(210) | 86<br><b>Rn</b><br>(222)  |
| 87<br><b>Fr</b> (223)     | 88<br><b>Ra</b><br>(226)  | 89 ‡<br><b>Ac</b><br>(227)  | 104<br><b>Rf</b><br>(261) | 105<br><b>Db</b><br>(262) | 106<br><b>Sg</b><br>(263) | 107<br><b>Bh</b><br>(262) | 108<br><b>Hs</b>          | 109<br><b>Mt</b>          |                           |                           |                           |                           |                           |                           |                           |                          |                           |

| † | 58        | 59        | 60        | 61        | 62        | 63        | 64        | 65        | 66        | 67        | 68         | 69        | 70        | 71        |
|---|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-----------|-----------|-----------|
|   | <b>Ce</b> | <b>Pr</b> | <b>Nd</b> | <b>Pm</b> | <b>Sm</b> | <b>Eu</b> | <b>Gd</b> | <b>Tb</b> | <b>Dy</b> | <b>Ho</b> | <b>E</b> r | <b>Tm</b> | <b>Yb</b> | <b>Lu</b> |
|   | 140.12    | 140.91    | 144.24    | 146.92    | 150.35    | 151.96    | 157.25    | 158.92    | 162.50    | 164.93    | 167.26     | 168.93    | 173.04    | 174.97    |

| ‡ | 90     | 91     | 92     | 93    | 94    | 95    | 96    | 97    | 98    | 99    | 100   | 101   | 102   | 103   |
|---|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|   | Th     | Pa     | U      | Np    | Pu    | Am    | Cm    | Bk    | Cf    | Es    | Fm    | Md    | No    | Lr    |
|   | 232.04 | 231.04 | 238.03 | (237) | (242) | (243) | (247) | (247) | (251) | (254) | (257) | (258) | (259) | (260) |

1. Consider the following reaction:

$$CaCl_2(aq) + 2AgNO_3(aq) \rightarrow 2AgCl(s) + Ca(NO_3)_2(aq)$$

 $2.0 \, dm^3$  of  $0.50 \, mol \, dm^{-3}$   $CaCl_2(aq)$  is mixed with  $1.0 \, dm^3$  of  $2.0 \, mol \, dm^{-3}$   $AgNO_3(aq)$ . What are the concentrations of  $Ca^{2+}(aq)$  and  $NO_3^-(aq)$  after mixing?

|    | [Ca <sup>2+</sup> ] / mol dm <sup>-3</sup> | $[NO_3^-]$ / mol dm $^{-3}$ |
|----|--------------------------------------------|-----------------------------|
| A. | 0.66                                       | 0.33                        |
| B. | 0.33                                       | 0.66                        |
| C. | 1.0                                        | 2.0                         |
| D. | 3.0                                        | 1.5                         |

**2.** Formation of polyethene from calcium carbide, CaC<sub>2</sub>, can take place as follows:

$$CaC_2 + 2H_2O \rightarrow Ca(OH)_2 + C_2H_2$$

$$C_2H_2 + H_2 \rightarrow C_2H_4$$

$$nC_2H_4 \rightarrow -(-CH_2 - CH_2 -)_n -$$

What mass of polyethene is obtained from 64 kg of CaC<sub>2</sub>?

- A. 7 kg
- B. 14 kg
- C. 21 kg
- D. 28 kg
- 3. Ammonia is manufactured by the synthesis of nitrogen and hydrogen as follows:

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$

 $56.0\ g$  of  $\ N_2$  produces  $34.0\ g$  of  $\ NH_3.$ 

What is the percentage yield of ammonia?

- A. 50
- B. 68
- C. 74
- D. 100

- 4. Isotopes are elements with
  - A. the same atomic number and the same number of neutrons.
  - B. the same mass number but a different number of neutrons.
  - C. the same atomic number but a different number of neutrons.
  - D. different atomic and mass numbers but the same number of neutrons.
- 5. A transition metal ion  $X^{3+}$  has the electronic configuration [Ar]  $3d^4$ . What is the atomic number of element X?
  - A. 22
  - B. 24
  - C. 25
  - D. 27
- **6.** Which of the following electronic configurations gives rise to the largest increase between the second and third ionisation energies?
  - $A. 1s^2 2s^2$
  - B.  $1s^2 2s^2 2p^2$
  - C.  $1s^2 2s^2 2p^6 3s^2$
  - D.  $1s^2 2s^2 2p^6 3s^1$

7. Which of the following displacement reactions is possible?

A. 
$$Br_2(aq) + 2Cl^-(aq) \rightarrow 2Br^-(aq) + Cl_2(aq)$$

B. 
$$I_2(aq) + 2Cl^-(aq) \rightarrow 2I^-(aq) + Cl_2(aq)$$

C. 
$$Cl_2(aq) + 2I^-(aq) \rightarrow 2Cl^-(aq) + I_2(aq)$$

D. 
$$I_2(aq) + 2Br^-(aq) \rightarrow 2I^-(aq) + Br_2(aq)$$

- **8.** An element E of mass number 40 has the electronic configuration 2. 8. 8. 2. Which statement regarding this element is **not** correct?
  - A. It belongs to group 2 of the periodic table.
  - B. It has 20 neutrons.
  - C. It belongs to period 4 of the periodic table.
  - D. The formula of its oxide is  $EO_2$ .
- **9.** Which ions are listed in order of **decreasing** ionic radius (highest first)?

A. 
$$Mg^{2+}, Na^+, F^-, O^{2-}$$

B. 
$$O^{2-}, F^-, Na^+, Mg^{2+}$$

C. 
$$F^-, O^{2-}, Na^+, Mg^{2+}$$

$$D. \qquad Mg^{2+}, Na^{+}, O^{2-}, F^{-}$$

- 10. Consider the following coordination compounds
  - I.  $[Pt(NH_3)_4]Cl_2$
  - II.  $[Pt(NH_3)_3Cl]Cl$
  - III.  $[Pt(NH_3)_2Cl_2]$

What are the charges on the complex ions?

|    | I  | II | III |
|----|----|----|-----|
| A. | +2 | +1 | 0   |
| B. | -2 | -1 | 0   |
| C. | 0  | +1 | +2  |
| D. | 0  | -1 | -2  |

- 11. Which intermolecular forces exist in dry ice,  $CO_2(s)$ ?
  - A. Covalent bonds
  - B. Dipole-dipole attractions
  - C. Van der Waal's forces
  - D. Hydrogen bonds
- **12.** When the species NH<sub>2</sub><sup>-</sup>, NH<sub>3</sub> and NH<sub>4</sub><sup>+</sup> are arranged in **increasing** order of H–N–H bond angle, the correct order is
  - A.  $NH_2^-, NH_3, NH_4^+$
  - B.  $NH_4^+, NH_3, NH_2^-$
  - C.  $NH_3$ ,  $NH_4^+$ ,  $NH_2^-$
  - D.  $NH_3$ ,  $NH_2^-$ ,  $NH_4^+$

**13.** The elements X and Y have the following electronic configurations:

$$X 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$$

$$Y 1s^2 2s^2 2p^6 3s^2 3p^5$$

What is the formula of the compound formed between X and Y?

- A. XY<sub>2</sub>
- B.  $X_5Y_2$
- C.  $X_2Y_5$
- D. XY<sub>5</sub>
- **14.** Which statements about the following molecule are correct?

$$(CH_3)_2$$
CHCH=CHC=CCH=CH $_2$ 

- I. Three carbon atoms are sp<sup>3</sup> hybridized.
- II. Three carbon atoms are sp<sup>2</sup> hybridized.
- III. Two carbon atoms are sp hybridized.
- A. I and II only
- B. I, II and III
- C. II and III only
- D. I and III only

- 15. Under what conditions would a given mass of oxygen gas occupy the greatest volume?
  - A. High temperature and high pressure
  - B. High temperature and low pressure
  - C. Low temperature and low pressure
  - D. Low temperature and high pressure
- **16.** The volume of a gas measured at 27 °C and 101.3 kPa is 20.0 dm<sup>3</sup>. What final temperature would be required to increase the volume to 40.0 dm<sup>3</sup> at 101.3 kPa?
  - A. 54 °C
  - B. 300 °C
  - C. 327 °C
  - D. 600 °C
- 17. Consider the following reaction:

$$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$$
  $\Delta H^{\ominus} = ?$ 

Bond enthalpies (in kJ mol<sup>-1</sup>) involved in the reaction are

$$N \equiv N$$
  $x$   
 $H-H$   $y$   
 $N-H$   $z$ 

Which calculation will give the value of  $\Delta H^{\oplus}$ ?

- A. x+3y-6z
- B. 6z x + 3y
- C. x-3y+6z
- D. x+3y-2z

- 18. If 3600 J of heat is added to 180 g of C<sub>2</sub>H<sub>5</sub>OH(l), its temperature increases from 18.5 °C to 28.5 °C. What is the specific heat capacity of  $C_2H_5OH(1)$ ?
  - $0.500~J~g^{-1}~^{\circ}C^{-1}$ A.
  - $2.00~J~g^{^{-1}}~^{\circ}C^{^{-1}}$ В
  - $20.0~J~g^{-1}~^{\circ}C^{-1}$ C.
  - 200 J g<sup>-1</sup> °C<sup>-1</sup> D.
- The following reaction takes place in an internal combustion engine: 19.

$$2C_8H_{18}(g) + 25O_2(g) \rightarrow 16CO_2(g) + 18H_2O(g)$$

What are the signs for  $\Delta H^{\ominus}$ ,  $\Delta S^{\ominus}$  and  $\Delta G^{\ominus}$  for this reaction?

|    | $\Delta H^{\ominus}$ | ΔS <sup>⊖</sup> | $\Delta G$ <sup>⊖</sup> |
|----|----------------------|-----------------|-------------------------|
| A. | I                    | +               | +                       |
| B. | _                    | +               | _                       |
| C. | _                    | -               | _                       |
| D. | +                    | _               | _                       |

20. Consider the following equations:

$$S(s) + O_2(g) \rightarrow SO_2(g) \qquad \Delta H^{\ominus} = -298 \text{ kJ}$$

$$SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g) \qquad \Delta H^{\ominus} = -98 \text{ kJ}$$

$$SO_3(g) + H_2O(l) \rightarrow H_2SO_4(l) \qquad \Delta H^{\ominus} = -130 \text{ kJ}$$

$$H_1(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l) \qquad \Delta H^{\ominus} = -286 \text{ kJ}$$

 $H_2(g) + \frac{1}{2}O_2(g) \to H_2O(l)$   $\Delta H^{\ominus} = -286 \text{ kJ}$ 

What is the standard enthalpy change of formation  $(\Delta H^{\Theta}_{f})$  for H<sub>2</sub>SO<sub>4</sub>(1)?

- A. -812 kJ
- B. +812 kJ
- C. -526 kJ
- D. +526 kJ

- 21. In general, the rate of a reaction can be increased by all of the following except
  - A. increasing the temperature.
  - B. increasing the activation energy.
  - C. increasing the concentration of reactants.
  - D. increasing the surface area of the reactants.
- 22. The following experimental data was obtained for the reaction  $X + Y \rightarrow$  products.

| [X] / mol dm <sup>-3</sup> | [Y] / mol dm <sup>-3</sup> | Initial rate<br>/ mol dm <sup>-3</sup> sec <sup>-1</sup> |
|----------------------------|----------------------------|----------------------------------------------------------|
| 0.10                       | 0.10                       | $4.0 \times 10^{-4}$                                     |
| 0.20                       | 0.20                       | $1.6 \times 10^{-3}$                                     |
| 0.50                       | 0.10                       | $1.0 \times 10^{-2}$                                     |
| 0.50                       | 0.50                       | 1.0×10 <sup>-2</sup>                                     |

What is the order of reaction with respect to X and the order of reaction with respect to Y?

- A. 2 and 0
- B. 0 and 2
- C. 2 and 1
- D. 1 and 0
- 23. The rate of a gaseous reaction is given by the expression rate = k [P][Q]. If the volume of the reaction vessel is reduced to  $\frac{1}{4}$  of the initial volume, what will be the ratio of the new rate to the original rate?
  - A. 1:4
  - B. 1:16
  - C. 4:1
  - D. 16:1

24. The volume of the reaction vessel containing the following equilibrium mixture

$$SO_2Cl_2(g) \rightleftharpoons SO_2(g) + Cl_2(g)$$

is increased. When equilibrium is re-established, which of the following will occur?

- A. The amount of  $SO_2Cl_2(g)$  will increase.
- B. The amount of  $SO_2Cl_2(g)$  will decrease.
- C. The amount of  $Cl_2(g)$  will remain unchanged.
- D. The amount of  $Cl_2(g)$  will decrease.
- **25.** A 1.0 dm³ reaction vessel contains initially 1.0 mol of  $NO_2(g)$  and 1.0 mol of  $N_2O_4(g)$ . At equilibrium, 0.75 mol of  $N_2O_4(g)$  are present. What is the value of  $K_c$ ?

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

- A. 0.33
- B. 0.50
- C. 2.0
- D. 3.0
- **26.** What affects the amount of  $X_3Y(g)$  at equilibrium in the following exothermic reaction?

$$3X(g) + Y(g) \rightleftharpoons X_3Y(g)$$

- A. Temperature, pressure and a catalyst
- B. Temperature and pressure
- C. Temperature only
- D. Pressure only

27. When the following 0.10 mol dm<sup>-3</sup> solutions are arranged in order of **increasing** pH (lowest first), what is the correct order?

- A. NaOH, NH<sub>3</sub>, CH<sub>3</sub>COOH, HCl
- B. HCl, CH<sub>3</sub>COOH, NH<sub>3</sub>, NaOH
- C. HCl, CH<sub>3</sub>COOH, NaOH, NH<sub>3</sub>
- D. NaOH, NH<sub>3</sub>, HCl, CH<sub>3</sub>COOH
- 28. Consider a weak acid HA dissolved in water.

$$HA(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + A^-(aq)$$

Which statements are correct?

- I.  $A^{-}(aq)$  is a much stronger base than  $H_2O(1)$ .
- II. HA dissociates only to a very small extent in aqueous solution.
- III. The concentration of  $H_3O^+(aq)$  is much greater than the concentration of HA(aq).
- A. I, II and III
- B. II and III only
- C. I and II only
- D. I and III only

- **29.** When the following aqueous solutions are arranged in order of **increasing** electrical conductivity (lowest first), what is the correct order?
  - I.  $0.10 \text{ mol dm}^{-3} \text{ CH}_3 \text{COOH}$
  - II.  $0.10 \text{ mol dm}^{-3} \text{ CH}_3 \text{CH}_2 \text{OH}$
  - III. 0.10 mol dm<sup>-3</sup> CH<sub>3</sub>COONa
  - A. I, II, III
  - B. III, II, I
  - C. I, III, II
  - D. II, I, III
- **30.** A certain buffer solution contains equal concentrations of  $X^-(aq)$  and HX(aq). The  $K_b$  value for  $X^-(aq)$  is  $1.0 \times 10^{-10}$ . What is the pH of the buffer?
  - A. 1
  - B. 4
  - C. 5
  - D. 10
- **31.** In the reaction

$$3Br_2 + 6CO_3^{2-} + 3H_2O \rightarrow 5Br^- + BrO_3^- + 6HCO_3^-$$

- A. Br<sub>2</sub> is only oxidised.
- B.  $Br_2$  is only reduced.
- C. Br<sub>2</sub> is neither oxidised nor reduced.
- D. Br<sub>2</sub> is both oxidised and reduced.

- **32.** Consider the following statements regarding electrolysis of molten lead(II) bromide.
  - I. Oxidation takes place at the anode where lead ions gain electrons.
  - II Reduction takes place at the cathode where lead ions gain electrons.
  - III Oxidation takes place at the anode where bromide ions lose electrons.
  - IV. Reduction takes place at the cathode where bromide ions lose electrons.

Which of the above statements are correct?

- A. I and II only
- B. I and IV only
- C. II and III only
- D. II and IV only
- **33.** The standard electrode potentials of three elements are as follows:

Which statement is correct?

- A. Z will oxidise  $Y^{-}(aq)$  and  $X^{-}(aq)$
- B. Y will oxidise  $X^{-}(aq)$  and  $Z^{-}(aq)$
- C. X will oxidise  $Y^{-}(aq)$  and  $Z^{-}(aq)$
- D. Z will oxidise  $Y^{-}(aq)$  but not  $X^{-}(aq)$
- 34. One Faraday of electricity was passed through the electrolytic cells placed in series containing solutions of  $Ag^{+}(aq)$ ,  $Ni^{2+}(aq)$  and  $Cr^{3+}(aq)$ . What mass of Ag, Ni and Cr respectively will be deposited?

[ 
$$A_r$$
 values: Ag = 108, Ni = 59, Cr = 52]

**35.** Consider the following reaction:

$$\mathrm{CH_{3}COOH} + \mathrm{NH_{3}} \rightarrow \mathrm{CH_{3}COONH_{4}} \rightarrow \mathrm{CH_{3}CONH_{2}}$$

What will be the final product if aminoethane (ethylamine) is used instead of NH<sub>3</sub>?

- A. CH<sub>3</sub>CONHCH<sub>2</sub>CH<sub>3</sub>
- B. CH<sub>3</sub>CONHCH<sub>3</sub>
- C. CH<sub>3</sub>CONH<sub>2</sub>
- D. CH<sub>3</sub>CONH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub>
- **36.** Which of the following compounds is optically active?
  - А. HO—CH<sub>2</sub>—СООН
  - В. H<sub>3</sub>C—СН—СООН ОН
  - С. H<sub>3</sub>C—СН—СООН | | СН<sub>3</sub>
  - D.

**37.** How many different environments for hydrogen atoms are present in the <sup>1</sup>H NMR spectrum of the following compound?

- A. 3
- B. 4
- C. 5
- D. 9
- **38.** Consider the following reactions:

$$\begin{array}{c|cccc} & O & & O \\ \hline I & & \parallel & \parallel & \parallel \\ CH_3CH_2CH_2OH \leftarrow CH_3CH_2C - H \rightarrow CH_3CH_2C - OH \end{array}$$

What are reagents I and II respectively?

- $A. \qquad H^+ \, / \, Cr_2 O_7^{2-}(aq) \qquad \qquad LiAlH_4$
- B. H<sub>2</sub>/Ni LiAlH<sub>4</sub>
- C. LiAlH<sub>4</sub>  $H^+/Cr_2O_7^{2-}(aq)$
- D.  $H^+/MnO_4^-(aq)$   $H^+/Cr_2O_7^{2-}(aq)$
- **39.** An organic liquid L has a relative molecular mass of 46. On heating with concentrated  $H_2SO_4$  at 170 °C, a colourless gas is evolved which decolourises  $Br_2(aq)$ . What is the organic liquid L?
  - A. CH<sub>3</sub>CH<sub>2</sub>OH
  - B. CH<sub>3</sub>OCH<sub>3</sub>
  - C. CH<sub>3</sub>CH=CH<sub>2</sub>
  - D. CH<sub>3</sub>OH

- **40.** The alkaline hydrolysis of primary halogenoalkanes usually follows an  $S_{\rm N}2$  mechanism. For which compound would the rate of hydrolysis be fastest?
  - A. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>F
  - B. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>Cl
  - C. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>Br
  - D. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>I