

CHEMISTRY HIGHER LEVEL PAPER 1

Tuesday 16 May 2000 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.

1 H 1.01				Atomic	Number												2 He 4.00
3 Li 6.94	4 Be 9.01			Atomi	c Mass							5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.31											13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 Cl 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.90	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.71	29 Cu 63.55	30 Zn 65.37	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc 98.91	44 Ru 101.07	45 Rh 102.91	46 Pd 106.42	47 Ag 107.87	48 Cd 112.40	49 In 114.82	50 Sn 118.69	51 Sb 121.75	52 Te 127.60	53 I 126.90	54 Xe 131.30
55 Cs 132.91	56 Ba 137.34	57 † La 138.91	72 Hf 178.49	73 Ta 180.95	74 W 183.85	75 Re 186.21	76 Os 190.21	77 Ir 192.22	78 Pt 195.09	79 Au 196.97	80 Hg 200.59	81 Tl 204.37	82 Pb 207.19	83 Bi 208.98	84 Po (210)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 ‡ Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs	109 Mt									
		ţ	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm 146.92	62 Sm 150.35	63 Eu 151.96	64 Gd 157.25	65 Tb 158.92	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.04	71 Lu 174.97	
		* *	90 Th 232.04	91 Pa 231.04	92 U 238.03	93 Np (237)	94 Pu (242)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (254)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (260)	

Periodic Table

M00/420/H(1)

-2-

1. According to the equation:

 $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$

what volume of air (20 % O_2) is required to react with 10 dm³ of SO₂?

- A. 2 dm^3
- B. 5 dm^3
- C. 10 dm^3
- D. 25 dm³
- 2. Which of the following compounds has the greatest **empirical** formula mass?
 - A. C_6H_6
 - B. C₄H₁₀
 - C. C_3H_6
 - D. C_2H_6

3.

$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$

When heated, $CaCO_3$ ($M_r = 100$) decomposes as shown above. When 20 g of impure $CaCO_3$ is heated, 0.15 moles of CO_2 are obtained. What is the percentage purity of the $CaCO_3$? (Assume that none of the impurities produce CO_2 upon heating.)

- A. 15
- B. 25
- C. 55
- D. 75

4. $vC_2H_3Cl(g) + wO_2(g) \rightarrow xCO_2(g) + yH_2O(g) + zHCl(g)$

Chloroethene can be burned in oxygen as shown above. What is the value of *w* when v = 2?

- A. 2
- B. 3
- C. 4
- D. 5
- 5. Which of the following particles contain more electrons than **neutrons**?
 - I. ${}^{1}_{1}H$
 - II. $^{35}_{17}$ Cl⁻
 - III. $^{39}_{19}$ K⁺
 - A. I only
 - B. II only
 - C. I and II only
 - D. II and III only
- 6. The first four ionisation energies (kJ mol⁻¹) for a particular element are 550, 1064, 4210 and 5500 respectively. This element should be placed in the same Group as
 - A. Li
 - B. Be
 - C. B
 - D. C

7. A certain element with two isotopes of masses M and M+2 is introduced into a mass spectrometer, vaporised and ionised. Which of the following paths are most likely for the resulting ions?

- *M M*+2
- A. I IV
- B. II I
- C. IV III
- D. IV II
- 8. A certain element has the electronic configuration $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^3$. Which oxidation state(s) would this element most likely show?
 - A. +2 only
 - B. +3 only
 - C. +2 and +5 only
 - D. +2, +3, +4, +5
- 9. Which one of the following increases in value from Li to Cs?
 - A. Atomic radius
 - B. Electronegativity
 - C. Ionisation energy
 - D. Melting point

10. Which of the following chlorides give neutral solutions when added to water?

- I. NaCl
- II. Al_2Cl_6
- III. PCl₃
- A. I only
- B. I and II only
- C. II and III only
- D. I, II and III
- **11.** In which of the following is there at least one double bond?
 - I. O₂
 - II. CO₂
 - III. C_2H_4
 - A. I only
 - B. III only
 - C. II and III only
 - D. I, II and III
- 12. According to VSEPR theory, which molecule would be expected to have the smallest bond angle?
 - A. H₂O
 - B. H₂CO
 - C. CH₄
 - D. NH₃

- 13. Which of the following can exist in **both** polar and non-polar forms?
 - A. CH_2Cl_2
 - B. C₂HCl
 - $C. \quad C_2H_2Cl_2$
 - D. C_2H_3Cl
- 14. What are the states of hybridisation for the carbon atoms in $NCCH_2COOH$?

	CN	CH_2	СООН
A.	sp	sp^3	sp^2
B.	sp	sp ²	sp ³
C.	sp ²	sp ²	sp ³
D.	sp ²	sp ³	sp ²

15. Which of the following best accounts for the observation that gases are easily compressed?

- A. Gas molecules have negligible attractive forces for one another.
- B. The volume occupied by the gas is much greater than that occupied by the molecules.
- C. The average energy of the molecules in a gas is proportional to the absolute temperature of the gas.
- D. The collisions between gas molecules are elastic.
- 16. Which expression represents the density of a gas sample of relative molar mass, M_r , at temperature, T, and pressure, P?
 - A. $\frac{PM_{\rm r}}{T}$
 - B. $\frac{RT}{PM_{\rm r}}$
 - C. $\frac{PM_{\rm r}}{RT}$

D.
$$\frac{RM_{\rm r}}{PT}$$

17.

- 8 -

The heating curve for 10 g of a substance is given above. How much energy would be required to melt completely 20 g of the substance that is initially at 10° C?

- B. 1200 J
- C. 800 J
- D. 400 J

18.

$$N_2(g) + O_2(g) \rightarrow 2NO(g) \qquad \Delta H = 180.4 \text{ kJ}$$

$$N_2(g) + 2O_2(g) \rightarrow 2NO_2(g) \qquad \Delta H = 66.4 \text{ kJ}$$

Use the enthalpy values above to calculate ΔH for the reaction;

 $NO(g) + \frac{1}{2}O_2(g) \rightarrow NO_2(g)$

A. -57 kJ

B. -114 kJ

- C. 57 kJ
- D. 114 kJ

19. In which reaction is the change in entropy (ΔS) closest to zero?

A.
$$SO_2(g) + \frac{1}{2}O_2(g) \rightarrow SO_3(g)$$

- B. $\operatorname{Br}_2(l) \to \operatorname{Br}_2(g)$
- C. $H_2(g) + I_2(g) \rightarrow 2HI(g)$
- D. $3Ca(s) + N_2(g) \rightarrow Ca_3N_2(s)$
- **20.** The Born–Haber cycle for the formation of potassium chloride includes the steps below:
 - I. $K(g) \rightarrow K^+(g) + e^-$
 - II. $\frac{1}{2}Cl_2(g) \rightarrow Cl(g)$
 - III. $Cl(g) + e^- \rightarrow Cl^-(g)$
 - IV. $K^+(g) + Cl^-(g) \rightarrow KCl(s)$

Which of these steps are exothermic?

- A. I and II only
- B. III and IV only
- C. I, II and III only
- D. I, III and IV only

21. Some collisions between reactant molecules do not form products. This is most likely because

- A. the molecules do not collide in the proper ratio.
- B. the molecules do not have enough energy.
- C. the concentration is too low.
- D. the reaction is at equilibrium.

22. Doubling which one of the following will double the rate of a first order reaction?

- A. Concentration of the reactant
- B. Size of solid particles
- C. Volume of solution in which the reaction is carried out
- D. Activation energy

$$F_2(g) + 2ClO_2(g) \rightarrow 2FClO_2(g)$$

The following data were obtained for the reaction above. Use these data to determine the orders for the reactants F_2 and ClO_2 .

	$[F_2(g)] / mol dm^{-3}$	$^{3} [ClO_{2}(g)] / mol dm^{-3}$	Rate / mol dm ^{-3} s ^{-1}
	0.1	0.01	1.2×10^{-3}
	0.1	0.04	4.8×10^{-3}
	0.2	0.01	2.4×10^{-3}
Order of re	eaction		
\mathbf{F}_2	ClO ₂		
1	1		
1	2		
2	1		
2	4		

24.

A.

B.

С.

D.

 $2SO_2(g) + O_2(g) \Rightarrow 2SO_3(g)$ $\Delta H = -197.8 \text{ kJ}$

The reaction above is an important step in the production of sulfuric acid. An increase in which of the following will increase the ratio of $\frac{SO_3(g)}{SO_2(g)}$ at equilibrium?

A. Pressure only

B. Temperature only

- C. Both temperature and pressure
- D. Neither pressure nor temperature

- 11 -

25.

$$2H_2O(1) \Rightarrow H_3O^+(aq) + OH^-(aq)$$

The equilibrium constant for the reaction above is 1.0×10^{-14} at 25° C and 2.1×10^{-14} at 35° C. What can be concluded from this information?

- A. $[H_3O^+]$ decreases as the temperature is raised.
- B. $[H_3O^+]$ is greater than $[OH^-]$ at 35° C.
- C. Water is a stronger electrolyte at 25° C.
- D. The ionisation of water is endothermic.

26.
$$N_2(g) + 3H_2(g) \Rightarrow 2NH_3(g)$$

What is the equilibrium expression for the reaction above?

A.
$$K_{c} = \frac{[NH_{3}]}{[N_{2}][H_{2}]}$$

B. $K_{c} = \frac{2[NH_{3}]}{[N_{2}][H_{2}]}$
C. $K_{c} = \frac{2[NH_{3}]}{3[N_{2}][H_{2}]}$
D. $K_{c} = \frac{[NH_{3}]^{2}}{[N_{2}][H_{2}]^{3}}$

- **27.** 10 cm³ of an HCl solution with a pH value of 2 was mixed with 90 cm³ of water. What will be the pH of the resulting solution?
 - A. 1
 - B. 3
 - C. 5
 - D. 7

28.	$CH_3COOH(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + CH_3COO^-$	(aq)
-----	--	------

In the equilibrium above, what are the two conjugate bases?

- A. CH_3COOH and H_2O
- B. CH_3COO^- and H_3O^+
- C. $CH_3COOH \text{ and } H_3O^+$
- D. CH_3COO^- and H_2O

29. Which of the following is the weakest acid in aqueous solution?

- A. C_6H_5OH $K_a = 1.3 \times 10^{-10}$ B.HCN $K_a = 4.9 \times 10^{-10}$ C. H_2Se $K_a = 1.5 \times 10^{-4}$ D.HF $K_a = 6.9 \times 10^{-4}$
- **30.** Which salt will produce the most alkaline solution when dissolved in water?
 - A. KNO₃
 - B. MgCl₂
 - C. CH₃CO₂Na
 - D. \mathbf{D} NH₄ \mathbf{Q}_2 SO₄

31. In the electrolysis of molten sodium chloride, the sodium ion goes to the

- A. positive electrode where it undergoes oxidation.
- B. negative electrode where it undergoes oxidation.
- C. positive electrode where it undergoes reduction.
- D. negative electrode where it undergoes reduction.

- **32.** Which one of the following could reduce $Cr_2O_7^{2-}(aq)$ to $Cr^{3+}(aq)$?
 - A. $Ca^{2+}(aq)$
 - B. $Cu^{2+}(aq)$
 - C. $Fe^{2+}(aq)$
 - D. $Zn^{2+}(aq)$

$$Tl^{+}(aq) + e^{-} \rightarrow Tl(s) \qquad E^{\circ} = -0.336 V$$

$$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s) \qquad E^{\circ} = -0.339 V$$

The standard electrode potentials for two metals are given above. What are the equation and cell potential for the spontaneous reaction that occurs?

A.	$\mathrm{Tl}^{+}(\mathrm{aq}) + \mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Tl}(\mathrm{s}) + \mathrm{Cu}(\mathrm{s})$	$E^{\ddot{O}} = 0.003 V$

- B. $2\text{Tl}(s) + \text{Cu}^{2+}(aq) \rightarrow 2\text{Tl}^{+}(aq) + \text{Cu}(s)$ $E^{\bullet} = 0.675 \text{ V}$
- C. $2Tl(s) + Cu^{2+}(aq) \rightarrow 2Tl^{+}(aq) + Cu(s)$ $E^{\bullet} = 1.011 \text{ V}$
- D. $2\text{Tl}^+(aq) + \text{Cu}(s) \rightarrow 2\text{Tl}(s) + \text{Cu}^{2+}(aq)$ $E^{\bullet} = 0.333 \text{ V}$
- **34.** When molten magnesium chloride is electrolysed, how many moles of gaseous chlorine will be produced for every mole of magnesium?
 - A. $\frac{1}{2}$
 - B. 1
 - C. 2
 - D. 4

35. Which names are correct for the following isomers of C_6H_{14} ?

I.	CH ₃ —CH—CH ₂ —CH ₂ —CH ₃ CH ₃	2-methylpentane
II.	$CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{CH_{2}} CH_{2} \xrightarrow{CH_{3}} CH_{3}$	2-ethyl-2-methylpropane
III.	$CH_3 \xrightarrow{CH_3} CH \xrightarrow{CH_3} CH \xrightarrow{CH_3} CH_3$	2,3-dimethylbutane

- I only А.
- В. I and II only
- C. I and III only
- D. I, II and III

Which of the compounds below will show a single peak in its ¹H-NMR spectrum? 36.

- С. I and II only
- D. I, II and III
- What is the correct order of reaction types in the following sequence? 37.

$$\begin{array}{cccc} I & II \\ C_2H_5Cl \xrightarrow{I} C_2H_5OH \xrightarrow{II} CH_3COOH \xrightarrow{III} CH_3COOCH_3 \\ \end{array}$$

$$I & II & III \\ A. substitution & oxidation & esterification \\ B. addition & substitution & substitution \\ C. oxidation & substitution & addition \\ D. substitution & oxidation & substitution \\ \end{array}$$

- Which carbon-containing product is most likely from the reaction of C_2H_4 and Br_2 ? 38.
 - C_2H_5Br A.

A.

В.

С.

- $C_2H_4Br_2$ B.
- С. C_2H_3Br
- $C_2H_2Br_2$ D.

39. Which of the following is expected to be a gas at 25° C?

40. Which of the compounds below is/are more likely to undergo substitution, rather than addition, reactions?

- I. CH₃CHCH₂
- II. $\mathbf{D}_{\mathrm{CH}_3}\mathbf{G}_3\mathrm{CC1}$
- III. C₆H₆
- A. I only
- B. II only
- C. I and III only
- D. II and III only