
CHEMISTRY

Friday 7 May 1999 (morning)

Paper 3

I hour 15 minutes

Candidate name:	Candidate Category and Number:			

This examination paper consists of 6 options.

The maximum mark for each option is 25.

The maximum mark for this paper is 50.

INSTRUCTIONS TO CANDIDATES

Write your candidate name and number in the boxes above.

Do NOT open this examination paper until instructed to do so.

Answer all of the questions from TWO of the options in the spaces provided.

At the end of the examination, complete box B with the letters of the options answered.

B

IONS ANSWEREI

C

EXAMINER	MODERATOR
/25	/25
/25	/25
TOTAL	TOTAL
/50	/50

D

IBC	4
	/25
	/25
TOTAL.	
	/50

EXAMINATION MATERIALS

Required: Calculator

Chemistry Data Booklet

Allowed:

A simple translating dictionary for candidates not working in their own language

[3]+

[2]

[3]

Option C - Human Biochemistry

C1. Iodine index (iodine number) is defined as the number of grams of iodine able to react with 100 grams of a fat or an oil in an addition reaction.

The table below contains the values of iodine indexes for three fats/oils.

Fat / Oil	Iodine index
Coconut	8-10
Butter	26-45
Olive	74-94

Explain the relationship between the iodine index and unsaturation, and select the most saturated fat/oil.

[2] The more uncaturated the oil, the bigger the iodine index (or vice) : Coconut oil (is most saturated).

Oleic acid [CH₃(CH₂)₇CH=CH(CH₂)₇COOH] is commonly present in fats and oils. Calculate the iodine index of this acid according to the above definition.

Mr of oleic acid = (18x12.0) + 34.0+(16.0 x2) = 282.0 (1)

Mr(I2) = 126.9x2 = 253.8 (Iz index = 253.8 × 100.0) = 90 (1)

253.89 Iz will react with 282.0 acid 1009 foliwill react with 5

Which of the above fats or oils would you recommend to be part of a healthy diet? Justify your answer.

Olive oil

Highest degree of unsaturation/nostweaturated/highest vodere index ()

State three functions of fats and oils in the human body. (d)

Maintown body temperature/insulature

Energy, source

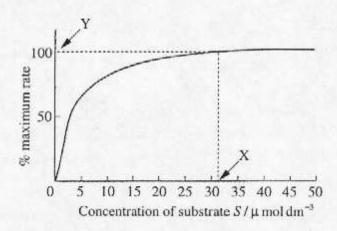
Cell membranes

to protect organs

O

Energy, dounce.

Cell Membranes


all accept to protect organs

to carry fut soluble vitamins

to prevent shin drying / water proofing

1518 Medicalan-boops shin bun drying

282.09 fat reacts with 253.89 Iz 100 " " " 253.8 × 100.0 = 90 C2. The graph below represents the activity of an enzyme on the substrate S.

What is the meaning of the point Y? [1] [this is where saturation, scans is answer to part (6) - give mark here only if student does not get it in part (6) Explain, on a molecular level, why the reaction rate increases with substrate concentration from 0 to X but remains constant thereafter. [2] O-X: Free active sites can accommodate increase in [substrate] then enryme molecules are saturated with substrate fall active sites in use (so, they cannot go faster). Define the Michaelis constant (K_m) and explain its significance. 121 Km represents [subs] at which the reaction rate = 1 V max The higher the Km value, the lower the enzyma activity GR the lower the Km value, the higher the enzyme activity. (d) From the graph, determine the value of K_m . [1] 5 3 und dm3 (accept value between 284) (accept: the higher kin value means the weaken the bond between the bubbitrate and the energyme on a convervalue of kn means a more efficient energine because with the same [5], there is a higher reaction

rate.

[3]

C3.	(a)	Give the empirical formula of a monosaccharide	and identify	two functional	groups	that	it
		possesses.			S.oups	CITCLE	14

CH2O; (accept- (HeO)n)	0
carbonye / c = 0; alkanal (aldehyde) also acceptable	
hydroxye / OHI accept R-D-R/ether	
accept R-D-R/ether	STORY STATE

(b) Draw the straight chain formula of glucose. Describe the structural difference between αand β-glucose and name the type of isomerism they exhibit.

O'IC-H	Oic-H	-> must-show zed or
H-C-0H	Ho- C-H	3rd of mia
HO- C-H	1	different direction
H - C-0H	H- C- 041	from the other
н-с-он	HO - C- H	OH Groups
	Ho - C - H	-> 1 mark for st. chamiformular
a-gluene Chi-ot	CHZOH	is in different directions or by
Ophical issues	/ / - lox	The rule

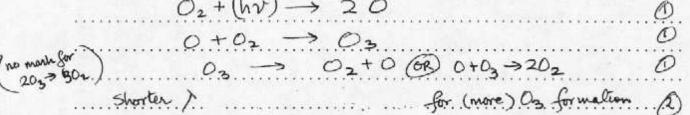
(c) Write a balanced equation to represent the formation of a disaccharide from glucose. Explain how this process is extended to the formation of a polysaccharide such as starch.

		6 H1200	5 + C6H	1206-	C12 H2	2011 +	H20	
						2	; 0.8	v balanced ec
	Manu	. mon	o wers /m	ono, sa cc	harides	involve	ed .	
6	P)	Many.	.c-o-	= bond	s. forms	ed		******

[5]

[3]

[1]


[2]

Option D – Environmental Chemistry

D1. Ozone depletion in the upper atmosphere is currently of great concern.

Write equations to show how ozone is produced and destroyed by natural processes in the (a) upper atmosphere. Indicate clearly any differences in the conditions for its production and — not necessary for mark

 $O_2 + (hv) \rightarrow 20$

Shorter > means higher energy (or Converse)

(No mark for "U.V. light needed for O3 production whice this is not an average the Give the mechanism by which ozone is destroyed by CCI₂F₂. Question of any differences in conditions")

ccl2 F2 →·cclF2 +·cl

03+·cl -> cl0·+02 clo. + 0 → 02 + · cl

Explain why ozone depletion is greater in polar regions.

Catalysis on ice particle (surface)

This question relates to 'acid rain'.

(a) Account for the fact that natural rain has a pH of around 5.6. Give a chemical equation to support your answer.

 CO_{2} of $H_{2}O_{(1)} = H_{2}CO_{3}$ (aq); forms an acid () or $CO_{2} + H_{2}O_{1} = H_{1}^{\dagger} + H_{2}CO_{3}$ (for both manhs as (g) H_{1}^{\dagger} implies it is acidic)

(States not required for mark)

(Just" Can decreased pH of water not sufficient - must indicale an acid formed)

(b) Because of pollution, acid rain may be 50 times more acidic than natural rain. Identify the two acids that cause this high acidity and indicate their origins. Show by means of an accounting how one of these wides.
equation how one of these acids is produced.
HNO3: 42504 or 4,502
Accept NOZ - NO - automobiles (rxn between N2 & Oz) or NOX (subsequent rxn of NO nith Oz to produce NOZ) then NOZ+420)
and ST say 502 or sulfur dioxide (no mark for sox or sulfur oxides - 30, in the origin)
MUST Say 502 or Sulfur dioxide (no mark for sax or sulfur oxides -302 in the origin) SO2 - Smeltern in a production OR coal or oil or fissil fuel (containings) (1) SO2 + 420 -> 42503 ER 503+ 420 -> 42504 (c) State two consequences of acid rain. or equature for production of 4NO3 Leaching minerals thomas Soul fielders labor demand to the life of the same of the life of the
(c) State two consequences of acid rain. on equation for production of HNO3 For basic neutrinals (4NO2 + 2H10 + O2 -> 4HNO3) Leaching minch also forms Coul field like laboration of HNO3
2 Contained to stone buildings
clamage to trees /forests, wen /steel objects not more quickly, poorer health
(Any two for one mark)
D3. Briefly describe the primary, secondary and tertiary stages of sewage treatment and indicate the types of pollutants removed by each. Explain why tertiary treatment is becoming increasingly important and state briefly the chemical basis of one type of tertiary treatment.
Primary: Filteration / declimentation / flocculation 3 method & Mostly insoluble materials/large particles (D) Secondary: Activated (bacterial) studge
Oxidisable waste (organic products)
Tertiary: Reverse osmosis or electricalysis Zamy. OR Chemical precipitation or con exchange one (
Soluble materials (Nitrates (Nos.) defengents)
Due to greater levels of No3/ferfilizers or PO43/detergents 1
Reverse osmosis: Semipermeable membrane & high pressure 1
the constitution the technology and semipermeable membranes
60 Chem precipitation: Chemicals added combines with dissolved
(or use of algae ponds to remove vitrales
(corbon bed, cascoal filters not acceptable as these would not be part of terhany stages of swage treatment)

Option E – Chemical Industries

E1. (a)	Alu	minium is manufactured by the electrolysis of alumina dissolved in molten cryolite.	
	(i)	Explain the function of the cryolite.	[1]
		The electrolysis can be carried out at a much lower Tor lowers melters point of alumina ()
	(ii)	(0 X)	[1]
		$20^2 \rightarrow 0_2 + 4e^-$ or $0^2 \rightarrow \frac{1}{2}0_2 + 2e^-$ (states not reqd.)	. 60
note: Tie anode a	(iii)		3 111
(b)		lain how the production of pure alumina from bauxite takes advantage of the amphoteric are of aluminium oxide.	[2]
		Alzo3 reacts/dissolves with/in NaOH/KOH Basic impurities/oxides alongt react/dissolve Must say "BASIC" to gain mark	3
(c)	Give	e two properties and related uses which make aluminium an important metal in today's ld.	[2]
		Resistance to corrosion - window frames Electrical conductivity & low density - overhead power cables	E
(d)	Desr	Low density - aricroft (fuselage) note: Link between property & use essential; I mark es pite aluminium being the most abundant metal in the earth's crust, it is frequently	ich.
(4)		cled. Give two reasons which favour recycling.	[2]
		Expensure to produce lower cost in energy-terms if recycled. Conserves resources	00

E2. (a)	Give the radical mechanism for the manufacture of low density polythene and explain how the process conditions are altered to produce high density polythene.
	$(RCOO)_2 \rightarrow (2RCOO_1) \rightarrow 2R \cdot + 2CO_2$
	·R + C2H4 > RCH2CH2°
	RCH2CH2: + C2H4 -> RCH2CH2CH2CH2.
	RCH2 CH2CH2++R > R(CH2)UR
	If just "initialism, propagation, termination" - award only I mark,
	Ziegler 1
	Catalyst ! lower pressure / lower temperature ()
(b)	Silicones are obtained by condensation polymerisation. Explain how this polymerisation differs from that used to obtain polythene. [2]
->	Polyethene: addition (polymerisation) or Not free radical "is above"
OF MENDIN	Silicones: (condensation paymenisation) where 2 larger molecules combine es must autain with the elimination of a (small) one (eg. 1120) Sundavid groups/ (eg. 1120) has to be removed/eliminated
E3. Oil i	s used as an energy source and as a chemical feedstock.
(a)	Name one compound obtained from oil which is used as a fuel and give an equation for its complete combustion. [2]
	Propane or accept any named hydrocarbon (1)
	C3H8 + $502 \rightarrow 300_2 + 4H_20 \text{ or}$.
(b)	Decane has been used as an energy source but has greater value as a source of other chemicals. Use an equation to show the formation of two organic products from the cracking of decane, $C_{10}H_{22}$. [2]
	C10 H12 -> C8H18+ C2H4 or appropriate alkane + alkene
	Name the processes by which polythene is obtained from oil. (1 mark for unbalanced equation provided products are alkane & an alkane) [3]
(c)	Name the processes by which polythene is obtained from oil.
	(Stage 1:) Fractional Distillation
	(Stage 2:) Ethera produced by cracking less valuable fractions (Stage 3:) Polymerisalin is used to convert ethere into polythere (or polyethere)
	(States) tougherman is used to convert theme
	was polythere (or polyethere)

Option F - Fuels and Energy

F1.	(a)	When coal is burned several gases are produced in addition to carbon dioxide. Write an equation for the combustion of an <i>element</i> in coal to form one of these gases.
	(b)	$2C_{(5)} + O_{2}_{(5)} \longrightarrow 2C_{(5)}$ or $S_{(5)} + O_{2(5)} \rightarrow S_{(2(5))}$ (1) But not No or No 2 (a) State how the emissions of the gas identified in (a) could be minimised
		CO: efficient combustion/burning or Ensure excessair/02 0
if Noz	61	2) SOz: (surubbing) by passing through an alkali/absorb in (surmy) powdered in lime stone - water or Destal garaged coal or Shuidland combination
CNOT	y(c) Ukali junt	In countries lacking natural gas reserves, coal is sometimes converted into synthesis gas, a mixture of carbon monoxide and hydrogen. Synthesis gas is then converted into liquid methanol, CH ₃ OH. Give two advantages of a liquid fuel compared with a solid fuel.
1150	rubbur	g) Can be pumped. Zamy
		Easy to burn; easy to mix with air; easier to control of combination of Write an equation for the complete combustion of methanol.
	(d)	(i) Write an equation for the complete combustion of methanol.
		$2CH_3OH + 30_2 \rightarrow 2Co_2 + 4H_2O \qquad \bigcirc$ (States not regd.)
		(ii) The standard enthalpies of formation, ΔH_f^0 , for CO ₂ and H ₂ O(1) are -393.5 and
		-258.8 kJ mol ⁻¹ respectively. Use this information and Table 11 of the Data Booklet
		to calculate the enthalpy of combustion of 1 mol of liquid methanol.
		AHG = -239 RT mat; CH30H + 3 02 -> CO2 + 2H20
		Attern = EAHS, p - EAHS, R or explicit or implicit
		= [-393.5) + 2(-256.8)]-(-239)+0)/(
		= -672.1 kJ mot 1 (need whit for mark) (accept -672 hot mot) (mark)
	1.	incorrect 140 fm
	(18	data bookelet, but late bookelet, but Calculated which is for implicit marker is okay, then 2 mols, then 3 marks) step)
	-	heat is okay, then
		2 mols, than 3 mails) step)

(iii) How would this value differ if the water were produced as a gas rather than as a liquid? [2]

Lower or less regative or more positive

Evergy needed to vaporise /evaporate water / steam not

condensed, thus less energy released.

Turn over

F2. (a)	State the main difference between a chemical reaction and a nuclear reaction.	[1]
	Chemical: rearrangement of couter) electrons or no new doments atoms for	med C
6	R) Nuclear: change in nucleus / new elements / atoms formed / conter 1 elements	hom
C	R) Nuclear: change in nucleus / new elements / atoms formed / conten) elements averangement unchanged. Only I mark so one statement may implicitly might	dy other
(b)	List three components of a nuclear reactor, other than the fuel, and describe the role of each	. [6]
	Shielding: To prevent escape of nuclear particles radio ac	hinty
	Control rods: To control and maintain a safe level of	
Austh	ver fission / control number of free neutrons	
Magi	Cooling syptem: Maintain temperature of heactor (core)	
	Lession / Control number of free neutrons Cooling system: Maintain temperature of heactor (core) Moderator: to slow the neutrons 2 mai	breach
	<u>3</u> /	2=6
F3. (a)	An important aspect of the nuclear industry is the disposal of radioactive waste. For highly	v
	radioactive waste the material is stored under suitable conditions until the activity has falle	7.2
	to a safe level.	
	(i) ^{32}P is a β emitter. State what β particles are and name the element produced in this	S
	decay process.	4
	electrons (32 $\beta \rightarrow \beta + 32 \leq)$ (1	
	Sulfur (32) - B + 32 S) (1 (equalton not regd))
	(ii) Calculate the time taken for 32 g of ³² P of half life 14 days to become 1 g of the	
	(ii) Calculate the time taken for 32 g of ³² P of half life 14 days to become 1 g of the radioactive isotope.	[3]
	32g-> 16 -> 8 -> 4 -> 2 -> 1 > 5t/2	0
	5×14	<i>a</i>
	시네 살으면 그 하나도 살아가 살아오고 있는데 그리고 아이를 하는데 그리고 하는데 하다 그리고 있다.	0
	= 70 days	0
(b)	Describe two other ways of dealing with radioactive waste.	[2]
	Surround waste with concrete or other suitable material	
	Solidism waster emona labia Hour is along a conquis H	N
ant rable	Solidisty waster, encapsulating them in glass or ceranic, then but I use rochets to shoot waste into space - NOT acceptable]	" O
accep	Luse lectures of house with affects	

bury the worte in underground hate (created by nuclear bomb

so waste wastes eventually well & fue with surrounding rock into glassyball)

OR Encase waste in well-designed containers and drop them into the ocean or change harmful isotopes into harmless ones by using a bombardment, laser or nuclear

229-205

Option G - Modern Analytical Chemistry

G1. Two compounds, A and B, having the same molecular formula, C₃H₈O, are methoxyethane and propan-2-ol respectively.

(a) Give the structural formula of A and B.

A: $CH_3 - CH_2 - O - CH_3$ B: $CH_3 - \frac{1}{C} - CH_3$ $H - \frac{1}{C} - \frac{1}{C} - O - \frac{1}{C} - \frac{1}$

(b) A student said that the compounds A and B could be easily distinguished by 'H NMR spectrometry.

Describe the 1H NMR spectrum of:

- (i) the ether A.

 (Hs in three different environments)

 Peaks ratio 3:2:3 (or 3:3:2)

 Chemical shifts of Hs near 3.8 ppm (due to R-o-cHz) (1)

 Splitting pattern: (smallest aren peaks) split vits quarter

 OR one peak split wits a truplet

 OR one peak split wits a truplet

 OR one of the two peaks with the larger area will be a singlet
 - the alkanol B.

 (Hs in three different environments)

 Peak ratio 6:1:1

 Peak corresponding to 6 split into a doublet

 OR

 The O-H hydrogen chemical Muse (5) at 4.5 ppm (1)

 Some of the ture peaks with the smallest area will be a singlet the orner will be a septet (or accept as complicated pattern)

(This question continues on the following page)

(ii)

[3]

(Question G1 continued)

A: 43-4-0-43

B: CH3- 6-CH3

(c) (i) A second student who had access to a mass spectrometer argued that she could easily distinguish the compounds by their mass spectra.

The mass spectra are as follows:

(C) Ho o)

10 20 30 40 50 60 m/z

Compound A

Do you think the second student could identify correctly the two compounds from the spectra above? Explain.

[3]

	V (a work of Sust county day acres)	
	yes (no make for Jun signing yes or no)	wardeninger:
	A has a peak at 29 due to (C2H5)+	M
- wer	I who (A haz, peak at 31 due to (CH3O)+	D
> Furrance	more of Both have peaks at 45 due to (GHSO) +	
0701	mor 60th name pour at 45 aute in ((21/50)	(1)
Sola	Ciration and in the second	
insp	Bitalia or compare with reference spectra	
2	(10 annex : 1100 because reporter are different mined	
7	(If answer is yes because spectra are different - award ?? (if answer is No suite spectra contain many similarpeals eg. 15	(marry)
	?! (if answer is No suite opertra contain many similarpeaus eg. 15	5,24,59 - gwe I mary
(ii)		el explanation
	for any differences.	121
		[4]
	B: (Alkanel) Higher boiling boint because	0 1

B: (Alkanol) Higher boiling point because (I)

OF hydrogen bonding in alkanols (I)

OR Ether has lower boiling point because of

No H bonding / weaker van der Waal's forces and

(alkernale explanation)

G2.	(a)	Infrared spectroscopy is a powerful tool for identifying organic compounds. State what occurs at the molecular level during the absorption of infrared (ir) radiation and identify the change that is necessary for ir absorption to occur. Discuss why infrared studies are particularly helpful in the characterisation of organic molecules. [4]
	Vib	rotuno Stretching/bending (of chemical bonds)
		Change in dipole moment is required (absorption will occur) (1) lifterent functional groups absorbs in different regions of the spectrum Precise absorption is affected by neighbouring atoms (1)
		or mention of fuiger print
	(b)	Use information in Table 18 of the Data Booklet to list the absorption regions expected for:
		(i) ethanoic acid.: CH3COOH: CH3-C=O11 (no ponalty of cm 1)
		(C= O) ; 1680 - 1750 cm ' 2 awy
		(C-H): 2940-3095"
		(ii) methyl methanoate. [2]
		H-C=0 (no penalty if emil $C=0:1680-1750$ cm ¹ 7
		C=0: 1680 - 1750 cmi ? C-H: 2840 - 3095" Jany two C-0: 1000-1300"
	(c)	Identify the absorption listed in (b) which could be used to distinguish between these two compounds. Explain why the other absorptions could not be used. [2]
		O-H in ethanoric acid could be used (1) Other peaks / absorptions occur in both spectra (1) or c-o peak in ester could be used.
		C-O peak in ester could be used.
	(d)	Identify the absorption listed in (b) which has the highest energy and calculate its wavelength in cm. $0 - H : \frac{1}{3380} cm^{-1} = 3.03 \times 10^{-4} cm$

[3]

3

[2]

Option H – Further Organic Chemistry

H1. An organic compound, P, of molecular formula C4H8O reacted with 2,4-dinitrophenylhydrazine to form an orange precipitate.

Give the name and structural formula of the functional group which is responsible for this reaction and deduce possible structural formulae for P.

Carbonyl; C = C (nead both for mark) (1)

(also accept alkanel/alkanone as well as combonyl)

CH3 - CH2 - CH3 - C - CH2 - CH3 } all 3 (2)

CH3 - CH2 - CH3 - C - CH2 - CH3 } one/buro: (1)

CH3 - CH3 - CH3 - CH3 - CH3 }

Outline the mechanism for the addition of the charge of the c

Outline the mechanism for the addition of hydrogen cyanide to any isomer of P (b) (i) showing clearly the reacting species.

> Speares (1) (5)

MUST involve attack of CN on & No mark for 1st attack of H+ on OF-

Write the structural formula of the organic molecule obtained by the acid hydrolysis of the product of (b) (i) and suggest why it might be optically inactive.

HOOC - C-OIH accept 400C - C-OH (R2)

Chiral C/asymmetric centere but racenic mischine () x

("It has no chiral centre" is not macceptable answer in this swice R, \$ Rz; it would be true for say the carbonyl compd. being acutone but not in this case)

is product incorrect, eq. - C-OH (no mark)

then (ECF): is not optically active because.

no 4 different groups scores I mark

	524 5		
H2.		ethane and ethene react with bromine, although the conditions and mechanisms are different.	
		the equations and conditions for these reactions. Outline the mechanism of one of these tions.	71
	reac	47.11	7]
		C2H4 + Br2 Room T & C2H4 Br2 (Instead of room T, accept to a decount require only)	
		C2H4 + Br C2H4 Br2	
		Br2 UV > 2.Br () C=C + Br - Br ()	
		C2H6 + ·Br -> · C2H5 + HBr ()	
		·CzHs + Brz -> CzHsBr +·Br () -> 1-C-C-H +Br -> -C-C-	
	0	R. GHE · Br > GHSBr Br F O Br Br	
(10	Howe	up (accept · Br+ · Br → Br2 as a terminating step) O	
8	W. A.	h.) = no mark for H (if Both mechanismo given,	
	Ma	then if H. + Br > HBr (EEF) them (if Both mechanisms given, when if H. + Br > HBr (EEF) them (mark	
H3.	The	mononitration and monobromination of benzene both occur by electrophilic substitution.	
	(4)	Describe the approximantal conditions in such and. For each provide size of a section of	
	(a)	show the formation of the electrophile.	57
		for mann	,
		Bromination: Brz and Febra (or ALBra) / reflex ()	
		Br - Br + ARBrs -> ARBr4 + Brt balanced eq. (1)	
		(or febra) (or febra)	
		Nitration: conc. acids. / heat / 60°C	
		H2504 + HNO3 -> H504 + NO2+ + H20)	
		- (minit -	
		O electrophil	
		nuce show auto So Balancad equation	
	0.1	(ab carrey)	,
	(b)	Outline the mechanism of one of these reactions. (must show arrow) H NO2 No2	I
		t the state of the	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
		0	
	(c)	Give the structure of the principal product formed during the dinitration of benzene. Explain	
,	1	your answer. No2 ,]
(NO	mash ut hai	meg. d.)	
3 98	8 the	Noz (-Noz: e-withdrawing deactivates ring,	
		NO2 with draws e-density from 284 positions so NO2 enters in position 3)	
		The will colour to the second of the second state (c)	1
		-> Explanation in terms of stability of intermediate(s)	

-> no made for just saying 3 - or meta directing as this is not an explanation

229-205