SADRU DAMII. M99/420/H(1) ## CHEMISTRY Answer Key ## Higher Level Croade | Thursday 6 May 1999 (afternoon) 5 6 7 Paper 1 Boundanis: Gade | 2 3 4 5 6 7 Paper 1 Boundanis: Mark 0-9 10-15 16-21 22-25 26-28 29-32 33 1 hour art 40 This examination paper consists of 40 questions. Each question offers 4 suggested answers. The maximum mark for this paper is 40. ## INSTRUCTIONS TO CANDIDATES Do NOT open this examination paper until instructed to do so. Answer ALL the questions. For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided. Calculators are NOT permitted for this examination paper. | Performani | ee Topic | Teaching Hours | Questions | Mean % Correct | |------------|--------------------|----------------|-------------------|----------------| | Franc's | Stoichiometry | 10 | 1,2,3,4 | 73.9 | | · (opos | Atomic Theory | 9 | 5,6,7 | 74.1 | | | Periodicity | 10 | 8,9,10 | 51.5 | | | Bonding | 16 | 11,12,13,14 | 62.8 | | | States of Matter | 5 | 15,16,17 | 69.3 | | | Energetics | 14 | 18,19,20 | 64.5 | | | Kinetics | 11 | 22,23,24 | 75.1 | | | Equilibrium | 10 | 25,26,27 | 71.3 | | | Acids and Bases | 14 | 28,29,31 | 57.0 | | 0 | xidation/Reduction | 13 | 32,33,34 | 66.7 | | (| Organic Chemistry | 22 | 35,36,37,38,39,40 | 56.6 | **EXAMINATION MATERIALS** Required: Optically Mark Read (OMR) answer sheet Allowed: 一年 四十二 | 128 255
228 255
23 255
24 255
25 255
26 255
27 26 255
27 26 255
27 26 26 26 26 26 26 26 26 26 26 26 26 26 | Way 1999 HLL LA CHEHIS UBJECT: 420 A CHEHIS | |--|---| | 528
528
528
528
528
528
528
528 | E CHOICE ANAL | | 22 25 25 25 25 25 25 25 25 25 25 25 25 2 | YSIS - QUESTION NU | | 73.03
95.39
65.28
81.08
69.72
79.49
79.49
78.90
78.90
68.75
67.26
67.26
67.26
65.76
65.76
65.76
65.76
65.76
65.76
65.76 | HEER ORDER 20 % OF TOTAL HARK | | 00010010000000000000000000000000000000 | 10:52:25 38 QUESTIONS 4 CHOICES DISCRIMINATION INDEX | 1. Which sample has the greatest mass? | | | Mr | The same | | | |----|-----------------|------|----------|------|---| | A. | 1.0 mol of N2H4 | 38.0 | ≯ | 38.0 | 9 | D. 25.0 mol of H₂ 2.0 $$\Rightarrow$$ 50.09 A compound contains 24 % magnesium, 28 % silicon and 48 % oxygen by mass. What is its empirical 2. formula? A. MgSiO $$\frac{Mq}{24}$$ $\frac{S1}{28}$ $\frac{O}{48}$ B. Mg₂SiO $\frac{34}{24}$ $\frac{38}{28}$ $\frac{48}{16}$ What is the mass in grams of one molecule of propanol, C_3H_7OH ? (Avogadro's constant $6.0 \times 10^{23} \text{ mol}^{-1}$) 36+8+16=603. (Avogadro's constant $$6.0 \times 10^{23} \text{ mol}^{-1}$$) A. 60 23 36+8+16 = 60 Chloroethene, C₂H₃Cl, reacts with oxygen according to the equation below: $$2C_2H_3Cl + 5O_2 \rightarrow 4CO_2 + 2H_2O + 2HCl$$ How many moles of CO2 are produced when 3.0 mol of C2H3Cl and 3.0 mol of O2 are reacted? - (A.) 2.4 / - B. 3.0 - C. 4.0 - D. 6.0 - 2.0 mol C2tts CL react with 50 md 02 3.0 " " " 7.5 mol 02 : n_{02} is limiting 5.0 mol $0_2 \rightarrow 4.0 \times 3.0 = 2.4 mol 02$.: 3.0 " $0_2 \rightarrow 4.0 \times 3.0 = 2.4 mol 02$ or $\frac{1}{4}n_{co_2} = \frac{1}{5}n_{02}$: $n_{co_2} = \frac{4}{5} \times 3.0$ - All isotopes of tin have the same - number of protons; - II. number of neutrons; K - III. mass number. - (A.) I only - B. II only - C. III only - D. I and III only The following diagram should be used to answer question 6. - According to the mass spectrum above, the relative atomic mass of the element shown is best expressed as - A. 20.0. ★ - (B.) between 20.0 and 21.0. - C. 21.0. × - D. between 21.0 and 22.0. - Using the Aufbau Principle, deduce which element below has the greatest number of unpaired electrons in its ground state. - A. Z = 13 - 15220 2p6 353p - B. Z=14 35° 3p° 11 11 - © Z=15 V - Z=16 - 8. Which element has the lowest first ionization energy? - A. Li D. - IE Increases - B.) Na V - decrease - C. Mg - D. Al - Based on melting points, the dividing line between ionic and covalent chlorides of the elements Mg to S lies between - (A.) Mg and Al. - B. Al and Si. - C. Si and P. - D. Pand S. X - 10. In which region of the Periodic Table would the element with the electronic structure below be located? - A. group 6 - B. noble gases - C. s block - D. d block V - 11. Which compound contains both covalent and ionic bonds? D. ethanoic acid, CH₃COOH In which of the following gaseous molecules are the bond angles equal to 120°? I only A. What are the types of hybridization of the carbon atoms in the compound $$H_2CIC-CH_2-COOH$$? A. $$sp^2 \times sp^2 \times sp^2$$ A. $$sp^{2} \times sp^{2} \times sp^{2} \times sp^{2} \times sp^{3} + \int_{H}^{H} \int_{H}^{H} \int_{H}^{\infty} du du$$ B. sp^{3} $sp^{2} \times sp^{3}$ sp^{3} sp^{3} sp^{3} sp^{2} D. $$sp^3$$ sp^3 $sp \norm{\norm{\sc v}}$ In which of the following pairs does the second substance have the lower boiling point? - 15. All of the following are characteristic properties of gases EXCEPT - A. they can expand without limit. - B. they diffuse readily. - C. they are easily compressed. - (D.) they have high densities. × low densities - 16. A 250 cm³ sample of an unknown gas has a mass of 1.42 g at 35°C and 0.85 atmospheres. Which expression gives its molar mass, M_i ? (R = 82.05 cm³ atm K⁻¹ mol⁻¹) 35+273 = 308 K - A. $\frac{1.42 \times 82.05 \times 35}{0.25 \times 0.85} X$ - B. $\frac{1.42 \times 82.05 \times 308}{\times (0.25 \times 0.85)}$ - C. $\frac{1.42 \times 250 \times 0.85}{82.05 \times 308}$ - $\begin{array}{cccc} \hline D. & \frac{1.42 \times 82.05 \times 308}{250 \times 0.85} \end{array}$ - PV = xRT $= \frac{m}{M}RT$ $\therefore M = \frac{m}{V} \frac{RT}{P}$ $= \frac{1.429}{250 \text{ cm}^3} \times 82.05 \text{ cm}^3 \text{ alm} \times \frac{308 \text{ K}}{0.85 \text{ alm}}$ - 17. A mixture of 0.40 mol of N₂, 0.20 mol of O₂ and 0.20 mol of CO₂ has a total pressure of 1.6 atmospheres. What is the partial pressure of O₂ in atmospheres? - A. 0.20 - B. 0.25 - C. 0.32 - (D.) 0.40 V $\begin{array}{l} | local = 0.20 \\ | local = 0.20 \\ | local = 0.20 \\ | local = 0.40 \end{array}$ 18. Excess thionyl chloride, SOCl₂, can be removed from a reaction mixture by reacting it with water according to the equation; $$SOCl_2(1) + H_2O(1) \rightarrow 2HCl(g) + SO_2(g)$$ Use the following data to calculate ΔH^{Θ} for this reaction. | | SOCl ₂ (l) | H ₂ O(l) | HCl(g) | SO ₂ (g) | |---|-----------------------|---------------------|--------|---------------------| | ΔH_f^{Θ} (kJ mol ⁻¹) | -245.6 | -285.8 | -92.3 | -296.8 | A. $$-142.3$$ B. -50.0 $$= \left[2(-923) + (-296.8)\right] - \left[(-245.6) + (-285.8)\right]$$ D. $+142.3$ $$= -481.4 - (-531.4)$$ $$= -481.4 + 531.4 = +50.0$$ 19. 200 J of energy were given to a 10 g sample of copper. If the temperature of the copper increased by 50°C, what is the specific heat capacity of the copper? A. $$0.25 \text{ Jg}^{-1} \cdot \text{C}^{-1}$$ $Q = \text{mcAT}$ B) $0.40 \text{ Jg}^{-1} \cdot \text{C}^{-1}$ $200 \text{ J} = 10 \text{g} \times \text{c} \times 50 \text{ C}$ c. $2.5 \text{ Jg}^{-1} \cdot \text{C}^{-1}$: $C = \frac{200 \text{ J}}{500 \text{ g}} \cdot \text{C}$ 20. Which of the changes below occurs with the greatest increase in entropy? A. $$Na_2O(s) + H_2O(l) \rightarrow 2Na^+(aq) + 2OH^-(aq)$$ (3) + (4) -> (44) + (49) C. $$H_2(g) + I_2(g) \rightarrow 2HI(g)$$ 2(g) \Rightarrow 2(g) \Rightarrow $$\underbrace{\text{D.}} \quad \underbrace{\text{C(s)} + \text{CO}_2(g)}_{\text{I (9)}} \to \underbrace{\text{2CO(g)}}_{\text{2-Cy)}} \quad \checkmark$$ = -597.3+99 For the reaction: $$\mathbf{6} HC = CH(g) \rightarrow C_6H_6(g)$$ $\Delta H^{\Theta} = -597.3 \text{ kJ}$ and $\Delta S^{\Theta} = -0.33 \text{ kJ K}^{-1}$. This reaction AG=AH-TAS AR T increases, rxn becomes less spontaneous is spontaneous at 300K and becomes non-spontaneous at higher temperatures. - is spontaneous at 300K and becomes non-spontaneous at lower temperatures. B. - is non-spontaneous at 300K and becomes spontaneous at higher temperatures. AG=QH-Ta-S C. =-597.3-300(-0.33 - is non-spontaneous at 300K and becomes spontaneous at lower temperatures. D. - The reaction between excess calcium carbonate and hydrochloric acid can be followed by measuring the 22. volume of carbon dioxide produced with time. The results of one such reaction are shown below. How does the rate of this reaction change with time and what is the main reason for this change? - The rate increases with time because the calcium carbonate particles get smaller. A. - The rate increases with time because the acid becomes more dilute. B. - The rate decreases with time because the calcium carbonate particles get smaller. C. - (D.) The rate decreases with time because the acid becomes more dilute. - 23. Most reactions occur in a series of steps, one of which is the rate determining step. The rate determining step is so called because it is the - A. first step. \mathcal{P} - B. last step. ★ - C. fastest step. ⊀ - D. slowest step. - 24. The reaction between nitrogen dioxide and carbon monoxide is given by the equation below; $$NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$$ According to the following experimental data, what is the rate equation? $$[NO_{2}] / \text{ mol dm}^{-3} \qquad [CO] / \text{ mol dm}^{-3} \qquad \text{Rate } / \text{ mol dm}^{-3} \text{ s}^{-1}$$ $$0.10 \times 3$$ $$0.30 \times 3$$ $$0.30 \times 3$$ $$0.10 $$0.10^{-6} B. Rate = $k[CO]^{2X}$ A. - $(C.) Rate = k[NO_2]^2$ - D. Rate = $k[NO_2]^3$ - 25. For a reaction which goes to completion, the equilibrium constant, K_c , is - (A.) >>1 V - B. << 1 - $C_{\cdot} = 1$ - D. = 0 26. The reaction between sulfur dioxide and oxygen occurs according to the equation below; $$2SO_2(g) + O_2(g) \neq 2SO_3(g) \xrightarrow{\text{that}} \Delta H^{\Theta} = -197 \text{ kJ}$$ A higher equilibrium concentration of SO3 will be produced by all of the following changes in reaction conditions EXCEPT - increasing the pressure. I high 1 > law vol > products occupying less vol. favored - adding more O2. B. - (C.) adding a catalyst. X - decreasing the temperature. D. The reaction between methane and hydrogen sulfide is represented by the equation below; 27. $$CH_4(g) + 2H_2S(g) \neq CS_2(g) + 4H_2(g)$$ Kc = [CS2][H2]4 [CH47[H25]2 What is the equilibrium expression for this reaction? - [CS,][H,]/[CH4][H,S] - B. 4[CS,][H,]/2[CH,][H,S] - C. [CS₂]+4[H₂]/[CH₄]+2[H₂S] - (D) [CS₂][H₂]⁴/[CH₄][H₂S]² - Which of the following 1 mol dm⁻³ solutions will be the poorest conductor of electricity? 28. - strong and >> strong electrolyle hydrochloric acid A. - (B) ethanoic acid - weak and \$\improx \text{weak electrolyle} strong base \$\improx \text{strong electrolyle} salt \$\improx \text{" " " " sodium hydroxide C. - ammonium chloride D. 29. In the equilibrium below; which species represent a conjugate acid-base pair? - CH3COOH/H2O A. - CH3COO-/H3O+ B. - C. H₂O/CH₃COO* - (D) H₃O⁺/H₂O / - 30. Which of the following combinations produce a buffer solution when equal volumes are mixed? - 0.1M HCl and 0.1M NH₄Cl I. - S.A. (HCL) & W.A. (NHO) X - П. - 0.1M HCl and 0.2M NH₃ -> NH₃ + H[†] -> NH₄ / 0.20 0.10 - 0.1M NH3 and 0.1M NH4Cl - . 0.10 I only X WHO NHO PHUT : ONO each w - III only B. - (C.) II and III only - I, II and III D. - In which reaction below does the first species listed react as a Lewis acid? - A. $H_2O + HPO_4^{2-} \Rightarrow H_2PO_4^{-} + OH^{-}$ (B) $H^{+} + NH_3 \Rightarrow NH_4^{+}$ Ge-pair acceptor - C. $NO_{7}^{-} + H_{3}O^{+} \Rightarrow HNO_{7} + H_{7}O$ - D. $NH_4^+ + HS^- \Rightarrow H_2S + NH_3$ - Zinc metal can supply electrons to copper ions and magnesium metal can supply electrons to zinc ions. Which is the strongest reducing agent? - A. copper ions X Mgcss+ Zn2tag) -> Zncss+ Mg2cag) B. zinc ions Zness + Cuzt -> Cuess + Zneag) - (C.) magnesium metal - D. zinc metal X - 33. A student constructs a voltaic cell using tin and lead electrodes. What is the e.m.f. for the spontaneous reaction? The electrode potentials are: $$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2\operatorname{e}^{-} \to \operatorname{Sn}(s)$$ $\operatorname{Pb}^{2+}(\operatorname{aq}) + 2\operatorname{e}^{-} \to \operatorname{Pb}(s)$ $$E^{\Theta} = -0.14 \text{ V}$$ $E^{\Theta} = -0.13 \text{ V}$ - 0.27 V - (B.) 0.01 V c. (20.01 v X D. (-0.27 VX Sn (5) → Sn²tagy+2e- E⁰₀₀ = +0.14U Pb²⁺tagy+2e- → Pb(5) E⁰red = -0.13U Sn(5) + Pb²⁺tagy → Pb(5) + Sn²⁺tagy E⁰cell = 0.14-0.13 = +0.01V. For which of the reactions below will ΔG^{Θ} be the most negative? $Cu(s) + 2Ag^{+}(aq) \rightarrow 2Ag(s) + Cu^{2+}(aq)$ A. $$E^{\Theta} = 0.46 \text{ V}$$ $Co(s) + Cu^{2+}(aq) \rightarrow Cu(s) + Co^{2+}(aq)$ (B.) $$E^{\Theta} = 0.62 \text{ V}$$ - $H_2(g) + Cd^{2+}(aq) \rightarrow Cd(s) + 2H^+(aq)$ C. - $E^{\circ} = -0.40 \text{ V}$ - $Fe^{2+}(aq) + Cu^{2+}(aq) \rightarrow Fe^{3+}(aq) + Cu^{+}(aq)$ $E^{\Theta} = -0.61 \text{ V}$ D. - 35. The most appropriate conditions for converting iodomethane to methanol are, warming iodomethane with - A. water. - B. dilute sulfuric acid. - (C.) dilute aqueous sodium hydroxide. - D. silver nitrate solution. - 36. For which of the following transformations does the reactive carbon undergo a change in hybridization? - A. alkane to chloroalkane B. acid to alkanal C. acid to ester (no change) - D alkanol to acid - 37. A gaseous alkane and a gaseous alkene are treated separately in the following ways. Which treatment will distinguish between them? - A. They are ignited in excess oxygen. - B. They are passed over heated copper. - C. They are bubbled through an aqueous solution of bromine. I text for uncaturation - D. They are bubbled through an aqueous solution of propanal. - 38. Polymers formed from monomers with the general formula H₂C=CHX - (A) have the same percentage of carbon as the monomer. - B. are produced by substitution reactions. X - C. contain C=C bonds. * polymers donot contain C=c) - D. are more reactive than the monomer. X 39. How many lines would be expected in the proton NMR spectrum of benzene, C6H6? - B. 2 - C. 6 - D. 42 - 40. Which one of the following compounds is optically active? - A. CH₃CH₂CH₂CH₂NH₂ C. CH₃CH₂NCH₂CH₃ D. CH₃CH₂NCH₃ CH₃