Law	Statement	Equation	Constant
Boyle's	P inversely proportional to V	$P_1V_1 = P_2V_2$	T, n
Charles's	V directly proportional to T	$V_1T_2 = V_2T_1$	P, n
Avagadro's	n directly proportional to T	$V_1 n_2 = V_2 N_1$	<i>P, T</i>
Gay-Lussac	P directly proportional to T	$P_1T_2 = P_2T_1$	V, n
Combined	Part 1: Use either Charles or Boyles first to solve for V	$\mathbf{P}_1\mathbf{V}_1 = \mathbf{P}_2\mathbf{V}_2$	n
	solve for final V	T ₁ T ₂	
	OR skip part 1 and 2 and use the formula.		
Ideal	R = 0.08206 L atm / mol K	PV = nRT	R
Dalton's	P(total) is the sum of partial pressures of components	$P_{T}=P_{1}+P_{2}+$	<i>T</i> , <i>V</i>