1st Semester Review 2008-2009

Find the molar mass for each of the following

- 1. FeCrO₄
- 2. $BaCl_2$
- 3. $NaC_2H_3O_2$
- 4. ammonium sulfide

- animomum sumde
 dinitrogen monoxide
 How many protons does the isotope I-129 have?
 How many neutrons does the isotope 129 I have?
 How many electrons does a Ba⁺² ion have?
 What is the mass of a diamond that has a volume of 1.7 ml and a density of 1.06 g/cm³?

WRITE THE FOLLOWING IN NORMAL N10) 2.3×10^3	IUMBER NOTAT 11) 4.	ION 7 x 10 ⁻⁷	12)	5.3 x 10 ⁻⁴
WRITE THE FOLLOWING IN STANDARD13)0.016 30	SCIENTIFIC NO 14) 2	DTATON 020 500	15)	0.002020
SOLVE THE FOLLOWING SHOWING AL 16) 6.7 m \rightarrow cm 17) 17.7 g \rightarrow mg 8) 8 MOLES OF \rightarrow g of O (16 g of O =1 m	L WORK, INCLU	IDE UNITS (F	Remember sig figs)	
REMEMBER SIG FIGS9) 4.120) 0.121) 7.6+6.29x 7.01x 2.94	22) 7.8 x 1 1.9 x 1	0 ⁴ 0 ²		
23) 42.640	24) 0.000 12	20	25) 492	20
Convert these temperatures 26. 234 °C to K 27. 654K to °C		28.	25 °C to	К
Name these compounds 29. SODIUM BROMIDE 30. IRON (III) CHLORIDE 31. CARBON MONOXIDE 32. CALCIUM SULFIDE 33. CARBON TETRAHYDRIDE		34. 35. 36. 37. 38.	AMMONIUM SULFIT MAGNESIUM BICAR COPPER (III) OXIDE SULFER TRIOXIDE SODIUM CHROMAT	E RBONATE E
NAME THE FOLLOWING COMPOUNDS 39. MgS 42. (NH 40. FeS 43. N ₂ O 41. Al ₂ O ₃ 44. N ₂ O	AND MOLECUL	ES 45. CO ₂ 46. CuC 47. Na ₂ S	CI SO3	48. MgSO ₄ 49. H ₂ SO ₃ 50. H ₂ S
$\begin{array}{c} \textbf{PUT THE FOLLOWING IN THEIR EMPIR} \\ 51. C_2H_6O_3 \qquad \qquad 52. \end{array}$	ICAL FORMULA CaCl ₂	53.	H ₂ O ₂ 54	4. Cl₂H ₆
55. What is the percentage by ma a. 48% b. 64.0% c.	ss of oxygen in C 60.0% d.	aCO₃? 92.3%		
56. The normal melting point of ice a. 0.0 K b. 32 K c.	e on the Kelvin sc 80 K d.	ale is 273 K		
 57. The empirical formula of a conthematical formula of a conthematical formula is: a. CH b. C₃H₆ 58. Which expression gives the number of the second s	npound is CH. If t c. C₅H ₁₈ umber of atoms in	he molecular $44 \text{ g of } CO_2$?	mass of the compoun d. C_6H_6	d is 78 g/mol,
a. 6.02 x 10 ⁻⁵ b. 1.81 x 4	10 ⁻ C.	22.4	a. 2 moles	

1st Semester Review 2008-2009

59. a	What is the molar mass of amr 38 g/mol b. 44 g/mo	monium sulfide? bl c. 50	g g/mol d. 68 g/mo	ol		
60. A compound consists of 72.2% magnesium and 27.8% nitrogen by mass. What is the empirical formula?						
Balance 1 61. 62.	the following equations: $C_2H_3 + O_2> CO_2$ Na + H ₂ O> NaOH + H ₂	+ H ₂ O (64. $C_{10}H_{16} + CI_2$ 65. $CO_2 + NH_3$	> C + HCl > OC(NH ₂) ₂ + H ₂ O		
63. Identify v 66. Z 67. H	H ₃ PO ₄ > H ₄ P ₂ O ₇ + H ₂ O whether the following are metals n e	s, nonmetals or me 68. H 69. Re	etalloids.	70. B 71. Ba		
 Nuclear Chemistry Write the balanced nuclear equation for the decay of each of the following nuclides 72. beta decay of I-136 73. alpha decay of Pu-234 74. positron production by C-11 75. Write a balanced nuclear equation for the bombardment of AI-27 with alpha particles to produce P-30 and a neutron. 76. What is the difference between nuclear fission and nuclear fusion? 77. ²¹⁰₈₄Po → ⁴₂He + ? What is the second product (also known as the daughter)? 78. What type of decay is demonstrated in the following reaction? ⁶⁰₂₇ Co → + ⁶⁰₂₈Ni 						
List what double dis combustic precipitati	type the following reactions are: splacement on on	single displacemer acid-base synthesis	ht	oxidation/reduction (redox) decomposition		
79. NaOH + KNO ₃ \rightarrow NaNO ₃ + KOH 80. CH ₄ + 2 O ₂ \rightarrow CO ₂ + 2 H ₂ O 82. 2 Fe + 6 NaBr \rightarrow 2 FeBr ₃ + 6 Na 83. CaSO ₄ + Mg(OH) ₂ \rightarrow Ca(OH) ₂ + MgSO ₄		\mathbf{D}_4	84. NH ₄ OH + HBr → H ₂ O + NH ₄ Br 85. Pb + O ₂ → PbO ₂ 86. Na ₂ CO ₃ → Na ₂ O + CO ₂			
87. Which is a precipitate in this equation? AgNO ₃ (aq) + NaCl(aq)> AgCl(s) + NaNO ₃ (aq) 88. Write the net ionic equation for the following equation AgNO ₃ (aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO ₃ (aq) 89. Write the net ionic equation for the following equation Fe(s) + 2AgNO ₃ (aq) \rightarrow 2Ag(s) + Fe(NO ₃) ₂ (aq) 90. According to the following unbalanced equation: CH ₃ OH +O ₂ \rightarrow H ₂ O +CO ₂ how many grams of oxygen would be required to react completely with 198 g of CH ₃ OH? 91. What is the % yield of water in a reaction in which the theoretical yield is 45.52 g of H ₂ O and actual yield is 36.25 g of H ₂ O?						
Limiting $2C_2H_6 + 7$	Reactant Problem ′ O₂→ 4 CO₂ + 6 H₂O					

 $2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$ If we begin with 2.36 moles of C₂H₆ and 7.31 moles of O₂, and the reaction goes to completion, 92. How many moles of CO₂ will be produced? 93. How many grams of H₂O will be produced? 94. How many moles of C₂H₆ will be left un-reacted?