Chemistry A: 1st Semester Review (ANSWERS)

FeCrO ₄	1	171.85
BaCl ₂	2	208.23
NaC ₂ H ₃ O ₂	3.	82.04
ammonium sulfide (NH4) 2 5	4.	68.17
dinitrogen monoxide	5.	18.02
N ₂ O		17 Marca
How many protons does the isotope I-129 have?	6.	53
How many neutrons does the isotope ¹²⁹ I have?	7.	76
How many electrons does a Ba^{+2} ion have?	8.	54

mass=density × volume 1.06g/cm3 × 1.7cm3 = 1.8g	g. 1.8g
IN THE SPACE AT THE RIGHT, WRITE THE FOLLOWING IN NORMAL NUMBER NOTATION 10) 2.3×10^3 11) 4.7×10^{-7} 12) 5.3×10^{-4}	10 2300 11 0.0000047 12 0.0053
IN THE SPACE AT THE RIGHT, WRITE THE FOLLOWING IN STANDARD SCIENTIFIC NOTAT 13) 0.016 30 14) 2 020 500 15) 0.002020	$\begin{array}{c} 0N & & & 2 \\ 13 & 1.6 \times 10^{-2} \\ 14 & 2.0205 \times 10^{-6} \\ 15 & 2.02 \times 10^{-6} \end{array}$
SOLVE THE FOLLOWING SHOWING ALL WORK, INCLUDE UNITS (Remember sig figs) 16) 6.7 m / LOC CM / = 670 cm cm	16 670cm
17) 17.7 g $/ \frac{1000 \text{ mg}}{19} / \frac{17,700}{19} \text{ mg}$	17 17,700 mg
18) 8 MOLES OF 0 / $\frac{16.00 \text{ g}}{1 \text{ mol } 0}$ = $\frac{128}{\text{ g}}$ g OF 0 (16 g OF 0 = 1 MOLE OF 0)	18 1289
REMEBER SIG FIGS	
19) 4.1 20) 0.1 21) 7.6 22) 7.8×10^4 ± 6.29 $\underline{x \ 7.01}$ $\underline{x \ 2.94}$ 1.9×10^2	19 10.4 20 0.7 21 22
23) 42.640 24) 0.000 120 25) 4920	22 410 23 5 24 3 25 3
Convert these temperatures 26. 234 °C to K 27. 654K to °C 28. 25 °C to K	26 507 27 381 28 298
Name these compounds29. SODIUM BROMIDE30 IRON (III) CHLORIDE31. CARBON MONOXIDE32. CALCIUM SULFIDE33. CARBON TETRAHYDRIDE34. AMMONIUM SULFITE35. MAGNESIUM BICARBONATE36. COPPER (III) OXIDE37. SULFER TRIOXIDE38. SODIUM CHROMATE	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Chemistry A: 1st Semester Review (ANSWERS)

NAME THE FOLLOWING COMPOUNDS AND MOLECULES

39. M	gS				39 ٢	lagnes	ium Sulfide
40. Fe	S						1) Sylfide
41. Al	203						num Oxide
42. (N	H ₄) ₃ PO ₄					1.	um Phosphate
43. N2	204				43_0	initre	ogen tetroxide
44. No	0				44 D	initro	gen monoxide
45, CC	D_{2}						dioxide
46. Ci	nCl						(1) Chloride
47. Na	12803					a second and a second	m Sulfite
48. M	gSO ₄				48	Magne	esium Sulfate
49. H	1. S.				49	Sulfu	rous acid
50. H					50 🦊	Hydi	rogen Sulfide
-	#S	G IN THEIR E	MPIRICAL FOR	RMULA			•
51. C ₂					51	CzH	03
52. Ca					52	CaC	2
53. H					53	Ho	
54. C ₁					54	CLH	-1
55.		entage by mass o	f oxygen in CaCO ₃	9			
JJ.	a. 48%	b. 64.0%	c. 60.0%	d. 92.3%	55	Q	(48%)
56.	The normal mal	ting point of ice o	n the Kelvin scale	C.			
20.	a. 0.0 K	b. 32 K	c. 80 K	d. 273 K	56	9	(273)
		1 0	1. 001 10.1	1 1	F7	4	(CGHG)
57.			ound is CH. If the r n the molecular for		57		C - G
	a. CH	b. C_3			16		
		01 03.	~~0	18	-0		(6.02×1023)
58.			er of atoms in 44 g		58	a	(6.02×10-/
	a. 6.02×10^{23}	b. 1.81 x 10 ²⁴	c. 22.4	d. 2 moles			
50	What is the mak	er maas of ommor	ium sulfido? (NL	1.5			1.5
59.	a. 38 g/mol	b. 44 g/mol	nium sulfide? (NL c. 50 g g/mol	d. 68 g/mol	59	d	(68.)
	u. 20 9/1101	S. I. Billor	0. 00 5 5 mill	a. oo gillor			
					60	M	, Ma
60.			magnesium and 27	.8% nitrogen	60	1 10	13~2
	by mass. what	is the empirical f	ormula?				

 $72.29 \left| \frac{1 \text{ mol}}{24.319} \right| = 2.97 \qquad \frac{2.97}{1.98} = 1.5.2 = 3$ $27.89 \left| \frac{1 \text{ mol}}{14.019} \right| = 1.98 \qquad \frac{1.98}{1.98} = 1.2 = 2$

Mg3N2

Chemistry A: 1st Semester Review (ANSWERS)

Chemistry A: 1 Semester K	eview (AINSWERS)	
Balance the following equations: 61. $4C_2H_3 + 1O_2> 8CO_2 + 6$	H ₂ O	
62.2Na +2H ₂ O> 2NaOH +	H ₂	
63. $2H_3PO_4$ > $H_4P_2O_7$ +	H ₂ O	
64. $C_{10}H_{16} + $ $C_{10}C_{10} + $	HCl	
65. $CO_2 + 2NH_3> OC$	$C(NH_2)_2 + H_2O$	
Identify whether the following are metals, nonmo 66. Zn a a metal 67. He c b. metalloid 68. H c c. bogus 69. Re a 70. B b 71. Ba a	etals or metalloids. c. nonmetal d. heavy metal, dooood!	
 72. alpha decay of Pu-234 74. positron production by C-11 	$\frac{32}{53} \xrightarrow{3} \frac{3}{7} \xrightarrow{3} \frac{3}{7} \xrightarrow{3} \frac{3}{7} \xrightarrow{3} \frac{3}{54} \xrightarrow{3} \frac{3}{7} \xrightarrow{3} \frac{3}{7} \xrightarrow{3} \frac{3}{7} \xrightarrow{3} \xrightarrow{3} \xrightarrow{3} \xrightarrow{3} \xrightarrow{3} \xrightarrow{3} \xrightarrow{3} 3$	x
75. Write a balanced nuclear equation for the bor76. What is the difference between nuclear fission	nbardment of Al-27 with alpha particles to pr n and nuclear fusion? 76. 27 Al	oduce P-30 and a neutron. $+\frac{4}{2}He \xrightarrow{30}{15}P + \frac{1}{6}N$
77. $^{210}_{84}$ Po $\rightarrow ^{4}_{2}$ He + ? σ What is the second	l product (also known as the daughter)?	
78. What type of decay is demonstrated in the f	following reaction? $^{60}_{27}$ Co $\rightarrow \frac{^{6}_{27}}{^{1}_{27}}$	- + ⁶⁰ 28Ni Beta Decay
List what type the following reactions are: double displacement combustion precipitation	single displacement acid-base synthesis	oxidation/reduction (redox) decomposition
79. NaOH + KNO ₃ \rightarrow NaNO ₃ + KOH Double Displacement 80. CH ₄ + 2 O ₂ \rightarrow CO ₂ + 2 H ₂ O Combustion, Redox 82. 2 Fe + 6 NaBr \rightarrow 2 FeBr ₃ + 6 Na Single Displacement, Redox 83. CaSO ₄ + Mg(OH) ₂ \rightarrow Ca(OH) ₂ + MgSO Double Displacement, Precipitation 84. NH ₄ OH + HBr \rightarrow H ₂ O + NH ₄ Br Acid-Base 85. Ph + O ₂ \rightarrow PbO ₂	D ₄	

- 85. $Pb + O_2 \rightarrow PbO_2$ Synthesis, Redox
- 86. $Na_2CO_3 \rightarrow Na_2O + CO_2$ Decomposition, Redox

Chemistry A: 1st Semester Review 2008-2009 ANSWERS

87. Which is a precipitate in this equation? AgNO₃(aq) + NaCl(aq) -----> AgCl(s) + NaNO₃(aq) AgCl is the precipitate 88. Write the net ionic equation for the following equation AgNO₃(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO₃(aq) Ag⁺ (aq) + Cl⁻ (aq) \rightarrow AgCl(s) 89. Write the net ionic equation for the following equation Fe(s) + 2AgNO₃(aq) \rightarrow 2Ag(s) + Fe(NO₃)₂(aq) Fe(s) + Ag⁺ (aq) \rightarrow Ag(s) + Fe²⁺(aq) 90. According to the following unbalanced equation: _2_CH₃OH + _3_O₂ \rightarrow _4_H₂O + _2_CO₂

how many grams of oxygen would be required to react completely with 198 g of CH₃OH?

198g CH ₃ OH	1 mole CH ₃ OH	3 mole O ₂	32.00g O ₂	$= 297 \text{ g O}_2$
	32.05g CH ₃ OH	2 mole CH ₃ OH	1 mole O ₂	

91. What is the % yield of water in a reaction in which the theoretical yield is 45.52 g of H₂O and actual yield is 36.25 g of H₂O?

 $\frac{36.25 \text{g H}_2 \text{O}}{45.52 \text{g H}_2 \text{O}} \quad \text{x } 100 = \textbf{79.6\%}$

Limiting Reactant Problem

 $2C_2H_6 + 7 O_2 \rightarrow 4 CO_2 + 6 H_2O$ If we begin with 2.36 moles of C_2H_6 and 7.31 moles of O_2 , and the reaction goes to completion, 92. How many moles of CO_2 will be produced?

93. How many grams of H_2O will be produced?

94. How many moles of C_2H_6 will be left un-reacted?

Information we need to know before we can answer the questions, "Which is the limiting reactanct?"

 $\begin{array}{c|c} \mathbf{92.} \\ \hline 7.31 \text{ moles } \mathbf{O}_2 \end{array} & 4 \text{ moles } \mathbf{CO}_2 \end{array} & = \mathbf{4.18 \text{ moles } \mathbf{CO}_2} \\ \hline 7 \text{ moles } \mathbf{O}_2 \end{array}$

93.

7.31 moles O_2 6 moles H_2O 18.02 g H_2O = 112 g H_2O 7 moles O_2 1 mole H_2O

94. 7.31 moles O_2 2 moles C_2H_6 = 2.09 moles C_2H_6 are needed for the reaction. We have 2.36, therefore C_2H_6 is in XS. 7 moles O_2

2.36 moles C_2H_6 - 2.09 moles $C_2H_6 = 0.27$ moles C_2H_6 unreacted