Practice Problems

- Write the equilibrium expression for the oxidation of hydrogen to form water vapor.
 2H₂(g) + O₂(g) ⇒ 2H₂O(g)
- Write the equilibrium expression for the following reaction.
 Hg(g) + I₂(g) ⇒ HgI₂(g)
- 2. Write the equilibrium expression for the formation of nitrosyl bromide. $2NO(g) + Br_2(g) \implies 2NOBr(g)$
- 10. Write the equilibrium expression for the following reaction. $SnO_2(s) + 2CO(g) \implies Sn(s) + 2CO_2(g)$
- 3. Write the equilibrium expression for the following reaction. $NO(g) + O_3(g) \implies O_2(g) + NO_2(g)$
- Write the equilibrium expression for the following reaction.
 C(s) + CO₂(g) ⇒ 2CO(g)
- Write the equilibrium expression for the following reaction.
 CH₄(g) + Cl₂(g) ⇒ CH₃Cl(g) + HCl(g)
- 12. Write the equilibrium expression for the following reaction. FeO(s) + CO(g) \rightleftharpoons Fe(s) + CO₂(g)
- 5. Write the equilibrium expression for the following reaction. $CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g)$
- 13. Write the equilibrium expression for the following reaction.KCl(l) + Na(l) ⇒ NaCl(l) + K(g)
- 6. Write the equilibrium expression for the following reaction.
 CO(g) + 2H₂(g) ⇒ CH₃OH(g)
- 14. Write the equilibrium expression for the following reaction.
 NaCl(s) + H₂SO₄(l) ⇒ HCl(g) + NaHSO₄(s)
- 7. Write the equilibrium expression for the combustion of ethane at high temperature. $2C_2H_6(g) + 7O_2(g) \implies 4CO_2(g) + 6H_2O(g)$
- 15. Write the equilibrium expression for the following reaction. $P_4(s) + 6NO(g) \implies P_4O_6(s) + 3N_2(g)$
- 8. Write the equilibrium expression for the decomposition of ethane. $C_2H_6(g) \implies C_2H_4(g) + H_2(g)$
- 16. Write the equilibrium expression for the following reaction. $2NO(g) + 2H_2(g) \rightleftharpoons N_2(g) + 2H_2O(l)$

RETEACHING

INTERPRETING VAPOR PRESSURE GRAPHS

The normal boiling point of a liquid is the temperature at which the vapor pressure of the liquid is equal to standard atmospheric pressure, or 101.325 kPa. As the atmospheric pressure on a liquid decreases, the boiling point of the liquid also decreases. Therefore, boiling point is a

function of atmospheric pressure.

The graph shows the vapor pressure of water. On this graph, temperature is plotted along the *x*, or horizontal, axis. Pressure, in kPa, is plotted along the *y*, or vertical, axis. Use the graph to answer the following questions.

- 1. What is the boiling point of water at standard atmospheric pressure?
- 2. At what temperature does water have a vapor pressure of 50 kPa?
- 3. At what temperature does water boil if the atmospheric pressure is 90 kPa?
- 4. What is the vapor pressure of water at $50^{\circ}\mathrm{C}?$
- 5. What is the vapor pressure of water at 60°C?
- 6. What happens to the vapor pressure of water as its temperature decreases?
- 7. What happens to the boiling point of water as atmospheric pressure increases?
- 8. Would the vapor pressure of water at 120°C be higher or lower than 101.325 kPa?