BRONSTED-LOWRY ACIDS AND BASES

According to Bronsted-Lowry theory, an acid is a proton (H+) donor, and a base is a proton acceptor.

Example:
$$HCI + OH^- \rightarrow CI^- + H_2O$$

The HCI acts as an acid, the OH $^-$ as a base. This reaction is reversible in that the $\rm H_2O$ can give back the proton to the CI $^-$.

Label the Bronsted-Lowry acids and bases in the following reactions and show the direction of proton transfer.

Example:
$$H_2O + CI^- \Leftrightarrow OH^- + HCI$$
Acid Base Base Acid

2.
$$H_2SO_4 + OH^- \Leftrightarrow HSO_4^- + H_2O$$

3.
$$HSO_4^- + H_2O \iff SO_4^{-2} + H_3O^+$$

4.
$$OH^- + H_3O^+ \Leftrightarrow H_2O + H_2O$$

5.
$$NH_3 + H_2O \Leftrightarrow NH_4^+ + OH^-$$

CON	IIIG	ATE	AC	D-R	ASF	PAIRS

Name	

In the exercise, Bronsted-Lowry Acids and Bases, it was shown that after an acid has given up its proton, it is capable of getting back that proton and acting as a base. Conjugate base is what is left after an acid gives up a proton. The stronger the acid, the weaker the conjugate base. The weaker the acid, the stronger the conjugate base.

Fill in the blanks in the table below.

Conjugate Pairs

	ACID	BASE	EQUATION
1.	H ₂ SO ₄	HSO₄⁻	H ₂ SO ₄ ↔ H ⁺ + HSO ₄ ⁻
2.	H₃PO₄		
3.		F-	
4.		NO ₃ -	
5.	H ₂ PO ₄		
6.	H ₂ O		
7.		SO ₄ -2	
8.	HPO ₄ -2		
9.	NH ₄ +	*	
10.		H ₂ O	

Which is a stronger base, I	HSO₄-	or H ₂ PO ₄ -?	
Which is a weaker base, C	or or	NO,-?	4)