Mass Practice Worksheet

$\underline{\hspace{0.5cm}}$ H_2 + $\underline{\hspace{0.5cm}}$ N_2 \rightarrow $\underline{\hspace{0.5cm}}$ N_3
1. How many moles of H_2 are needed to react with 2.5 moles of N_2 ?
2. How many moles of NH_3 can be produced by 2.5 moles of N_2 ?
$__CaCl_2 + __AgNO_3 \rightarrow __Ca(NO_3)_2 + __AgCl$
3. What mass of AgNO ₃ solution is needed to react with 2.50 g or CaCl ₂ ?
4. What is the mass of CaCl ₂ needed to react with 0.250 g AgNO ₃ ?
HCl + NaHCO $_3$ \rightarrow NaCl + H $_2$ O + CO $_2$
5. What mass of NaCl can be produced from 2.00 g of NaHCO $_3$ in the above reaction?
6. What mass of CO_2 can be produced by reacting 2.50 grams of NaHCO $_3$ with excess acid?
Mass Practice Worksheet
$\underline{\hspace{0.5cm}}$ H_2 + $\underline{\hspace{0.5cm}}$ N_2 \rightarrow $\underline{\hspace{0.5cm}}$ N_3
1. How many moles of H_2 are needed to react with 2.5 moles of N_2 ?
2. How many moles of NH_3 can be produced by 2.5 moles of N_2 ?
$__CaCl_2 + __AgNO_3 \rightarrow __Ca(NO_3)_2 + __AgCl$
3. What mass of AgNO ₃ solution is needed to react with 2.50 g or CaCl ₂ ?
4. What is the mass of $CaCl_2$ needed to react with 0.250 g AgNO ₃ ?
4. What is the mass of CaCl $_2$ needed to react with 0.250 g AgNO $_3$? HCl + NaHCO $_3$ \rightarrow NaCl + H $_2$ O + CO $_2$

6. What mass of CO_2 can be produced by reacting 2.50 grams of NaHCO $_3$ with excess acid?

reaction?

Mass Practice Worksheet

$$\underline{\hspace{0.5cm}}$$
 H_2 + $\underline{\hspace{0.5cm}}$ N_2 \longrightarrow $\underline{\hspace{0.5cm}}$ N_3

- 1. How many moles of H_2 are needed to react with 2.5 moles of N_2 ?
- 2. How many moles of NH₃ can be produced by 2.5 moles of N₂?

$$_$$
CaCl₂ + $_$ AgNO₃ \rightarrow $_$ Ca(NO₃)₂ + $_$ AgCl

- 3. What mass of AgNO₃ solution is needed to react with 2.50 g or CaCl₂?
- 4. What is the mass of CaCl₂ needed to react with 0.250 g AgNO₃?

__HCl + __ NaHCO
$$_3$$
 \rightarrow __NaCl + __ H $_2$ O + __ CO $_2$

- 5. What mass of NaCl can be produced from 2.00 g of NaHCO $_3$ in the above reaction?
- 6. What mass of CO_2 can be produced by reacting 2.50 grams of NaHCO $_3$ with excess acid?