Mass Practice Worksheet

$$3_{\text{H}_2}$$
 + $N_2 \rightarrow 2_{\text{NH}_3}$

1. How many moles of H₂ are needed to react with 2.5 moles of N₂?

2. How many moles of NH₃ can be produced by 2.5 moles of N₂?

2.5 mol Nz
$$\frac{2 \text{ mol NH}_3}{1 \text{ mol N}_2} = 5.0 \text{mol NH}_3$$

$$-\text{CaCl}_2 + \frac{2 \text{ AgNO}_3}{2} \rightarrow -\text{Ca(NO}_3)_2 + \frac{2 \text{ AgCl}_3}{2} = \frac{2 \text{ AgCl}_3}{2} \frac{2 \text{ AgCl}_3}{2}$$

3. What mass of AgNO₃ solution is needed to react with 2.50 g or CaCl₂?

4. What is the mass of CaCl₂ needed to react with 0.250 g AgNO₃?

5. What mass of NaCl can be produced from 2.00 g of NaHCO₃ in the above reaction?

6. What mass of CO₂ can be produced by reacting 2.50 grams of NaHCO₃ with excess acid?