## Chapter 6 Standardized Test Practice

- **1.** The actual number of atoms of each element contained in a molecule is given by the molecule's:
  - A. empirical formula.C. mass percent formula.B. molecular formula.D. percent composition.
- **2.** What is the molar mass of the sodium sulfate Na2SO4?**<u>F.</u>** 71.06 g/mol**<u>G.</u>** 94.05 g/mol**<u>H.</u>** 142.05 g/mol**J.** 215.13 g/mol
- 3. Which of the following in NOT an empirical formula?
  - $\underline{\mathbf{A}} \cdot \operatorname{CH}_4 \qquad \underline{\mathbf{B}} \cdot \operatorname{Na}_2 \operatorname{SO}_4 \qquad \underline{\mathbf{C}} \cdot \operatorname{H}_2 \operatorname{O}_2 \qquad \underline{\mathbf{D}} \cdot \operatorname{Sn}_3 (\operatorname{PO}_4)_2$
- **4.** What is the percent, by mass, of water in  $BaCl_2 \cdot 2H_2O$  (formula mass = 243) equal to?

**F.** 
$$\frac{18}{243} \times 100$$
 **G.**  $\frac{36}{243} \times 100$  **H.**  $\frac{243}{18} \times 100$  **J.**  $\frac{243}{36} \times 100$ 

## Passage I

Use the following passage and graphs to answer questions 5–7.

To practice solving percentage composition problems, a student made a series of circle graphs showing the composition of a sample of carbon dioxide (CO<sub>2</sub>). Graph A is based on a sample that is 100% CO<sub>2</sub>. Graph B represents the mass fractions of a 100.0-g sample of CO<sub>2</sub>. Graph C represents the mass fractions of a 23.5-g sample of CO<sub>2</sub>.



5. Which graph displays an incorrect composition relationship?

| <u>A.</u> Graph A | <u>C.</u> Graph C                        |  |
|-------------------|------------------------------------------|--|
| <b>B.</b> Graph B | <b>D.</b> All of the graphs are correct. |  |

**6.** Based on the data shown in Graph C, how many atoms of carbon are there in a 23.5-g sample of  $CO_2$ ?

| <b><u>F.</u></b> $2.26 \times 10^{23}$ atoms | <u><b>H.</b></u> $6.02 \times 10^{23}$ atoms |
|----------------------------------------------|----------------------------------------------|
| <u><b>G.</b></u> $3.21 \times 10^{23}$ atoms | <b><u>J.</u></b> $1.18 \times 10^{24}$ atoms |

| Name                                                                                |                                    | Section                                                                    | Date                      |
|-------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------|---------------------------|
| <ol> <li>What percentage</li> <li><u>A.</u> 6.41%</li> </ol>                        | (on a mass basis) of th            | e sample in Graph C is                                                     | oxygen (O <sub>2</sub> )? |
|                                                                                     | <u><b>B.</b></u> 23.49%            | <u>C.</u> 27.29%                                                           | <u>D.</u> 72.71%          |
| <b>8.</b> A sample of 61 g                                                          | g of AgNO <sub>3</sub> represents  | now many moles of AgM                                                      | NO <sub>3</sub> ?         |
| <u><b>F.</b></u> 0.044 mol                                                          | <u>G.</u> 0.36 mol                 | <u><b>H.</b></u> 0.44 mol                                                  | <u><b>J.</b></u> 170 mol  |
| <ol> <li>Molar mass is a v<br/><u>A.</u> Empirical for<br/><u>B.</u> Amu</li> </ol> | whole number multiple<br>mula mass | of which of the following <u>C.</u> Average atoming <u>D.</u> Mass percent | ng?<br>c mass             |
| <b>10.</b> What is the perce                                                        | ent composition (by ma             | ss) of magnesium iodid                                                     | e (MgI <sub>2</sub> )?    |
| <u><b>F.</b></u> 91.3% Mg, 8.                                                       | 7% I                               | <u>H.</u> 16.1% Mg, 83                                                     | .9% I                     |

## Passage II

G. 8.7% Mg, 91.3% I

Use the following passage and table to answer questions 11-13.

A student created Table 1 to summarize the results of a mass fraction analysis he performed on an unknown chemical compound. He determined that the compound was composed of carbon, hydrogen, and oxygen.

**J.** 83.9% Mg, 16.1% I

| Table 1  |                             |  |
|----------|-----------------------------|--|
| Element  | Mass fraction in sample (g) |  |
| Carbon   | 0.0806                      |  |
| Hydrogen | 0.01353                     |  |
| Oxygen   | 0.1074                      |  |

**11.** What is the percentage composition of carbon in the unknown compound?

- <u>A.</u> 6.71% <u>B.</u> 8.06% <u>C.</u> 39.99% <u>D.</u> 53.29%
- **12.** What is the molecular formula of the unknown compound?

**<u>F.</u>** CHO <u>**G.**</u>  $C_2$ HO <u>**H.**</u>  $CH_2O$  <u>**J.**</u>  $C_2H_2O$ 

**13.** How many molecules are contained in 1.25 moles of the compound? $\underline{A.}$  1.214 × 10<sup>23</sup> molecules $\underline{C.}$  8.060 × 10<sup>23</sup> molecules**B.** 7.528 × 10<sup>23</sup> molecules**D.** 1.436 × 10<sup>24</sup> molecules

**14.** A compound contains 16% carbon and 84% sulfur by mass. What is the empirical formula of this compound?

 $\underline{\mathbf{F}} \ \mathbf{CS}_2 \qquad \underline{\mathbf{G}} \ \mathbf{C}_2 \mathbf{S}_2 \qquad \underline{\mathbf{H}} \ \mathbf{CS} \qquad \underline{\mathbf{J}} \ \mathbf{C}_2 \mathbf{S}$ 

| Name | Section | Date |  |
|------|---------|------|--|
|      |         |      |  |

**15.** A student who likes the taste of salt adds 2.50 moles of sodium chloride (table salt) to her order of French fries. How many grams of salt did she add?

<u>A.</u> 5.00 g <u>B.</u> 58.4 g <u>C.</u> 146 g <u>D.</u>  $6.02 \times 10^{23}$  g

16. Which of the following compounds has the empirical formula CH?

| <u><b>F.</b></u> СН <sub>4</sub> | $\underline{\mathbf{G}}_{\mathbf{C}}\mathbf{C}_{2}\mathbf{H}_{4}$ | $\underline{\mathbf{H}}_{\mathbf{C}}\mathbf{C}_{6}\mathbf{H}_{6}$ | $\underline{J}$ $C_3H_8$ |
|----------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------|
|                                  |                                                                   |                                                                   |                          |

**17.** What is the total number of SO<sub>2</sub> molecules in a 0.10-mole sample of SO<sub>2</sub>? <u>A.</u>  $6.0 \times 10^{21}$  <u>B.</u>  $6.0 \times 10^{22}$  <u>C.</u>  $6.0 \times 10^{23}$  <u>D.</u>  $6.0 \times 10^{24}$